精英家教网 > 高中数学 > 题目详情

【题目】已知正方形的中心为直线和直线的交点,其一边所在直线方程为

(1)写出正方形的中心坐标;

(2)求其它三边所在直线的方程(写出一般式).

【答案】(1);(2).

【解析】

(1),得:即中心坐标为;(2)根据正方形中已知的边所在的直线方程,得到可设正方形与其平行的一边所在直线方程为正方形中心到各边距离相等,根据平行线间的距离相等得到直线方程;与垂直的两边所在直线方程为,再由正方形中心到各边距离相等,根据点线距离得到直线方程.

(1)由,得:即中心坐标为

(2)∵正方形一边所在直线方程为

∴可设正方形与其平行的一边所在直线方程为

∵正方形中心到各边距离相等,

(舍)

∴这边所在直线方程为

设与垂直的两边所在直线方程为

∵正方形中心到各边距离相等

∴这两边所在直线方程为

∴其它三边所在直线的方程为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,设抛物线 的准线 轴交于椭圆 的右焦点 的左焦点.椭圆的离心率为 ,抛物线 与椭圆 交于 轴上方一点 ,连接 并延长交 于点 上一动点,且在 之间移动.

(1)当 时,求 的方程;

(2)若 的边长恰好是三个连续的自然数。求到直线距离的最大值以及此时 的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正方体ABCD﹣A1B1C1D1中,点E是棱A1B1的中点,则直线AE与平面BDD1B1所成角的正弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2 sin cos ﹣2sin2 (ω>0)的最小正周期为3π.
(I)求函数f(x)的单调递增区间;
(Ⅱ)在△ABC中,a,b,c分别为角A,B,C所对的边,a<b<c, a=2csinA,并且f( A+ )= ,求cosB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线E:y2=2px(p>0)的准线与x轴交于点K,过点K作圆(x﹣5)2+y2=9的两条切线,切点为M,N,|MN|=3
(1)求抛物线E的方程;
(2)设A,B是抛物线E上分别位于x轴两侧的两个动点,且 (其中O为坐标原点).
①求证:直线AB必过定点,并求出该定点Q的坐标;
②过点Q作AB的垂线与抛物线交于G,D两点,求四边形AGBD面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】连续抛掷同一颗均匀的骰子,令第i次得到的点数为ai , 若存在正整数k,使a1+a2+…+ak=6,则称k为你的幸运数字.
(1)求你的幸运数字为3的概率;
(2)若k=1,则你的得分为5分;若k=2,则你的得分为3分;若k=3,则你的得分为1分;若抛掷三次还没找到你的幸运数字则记0分,求得分X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:(x﹣2)2+(y﹣3)2=16及直线l:(m+2)x+(3m+1)y=15m+10(m∈R).

(1)证明:不论m取什么实数,直线l与圆C恒相交;

(2)求直线l被圆C截得的弦长的最短长度及此时的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的右焦点为,离心率为,过作与轴垂直的直线与椭圆交于两点,

(1)求椭圆的方程;

(2)设过点的直线的斜率存在且不为0,直线交椭圆于两点,若中点为为原点,直线于点,若以为直径的圆过右焦点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l:x﹣y=1与圆M:x2+y2﹣2x+2y﹣1=0相交于A,C两点,点B,D分别在圆M上运动,且位于直线AC两侧,则四边形ABCD面积的最大值为

查看答案和解析>>

同步练习册答案