精英家教网 > 高中数学 > 题目详情

【题目】已知正方体ABCD﹣A1B1C1D1中,点E是棱A1B1的中点,则直线AE与平面BDD1B1所成角的正弦值

【答案】
【解析】解:取AB的中点F,连接B1F,过点F作FG⊥BD,垂足为G,连接B1G,
由正方体性质易知BB1⊥平面ABCD,又FG平面ABCD,
∴BB1⊥FG
又FG⊥BD,BD∩BB1=B,BD平面BDD1B1 , BB1平面BDD1B1
∴FG⊥平面BDD1B1
∴∠FB1G为B1F与平面平面BDD1B1所成角
设正方体ABCD﹣A1B1C1D1棱长为1,
∴FG= ,B1F=
∴sin∠B1FO=
而AE∥B1F,所以直线AE与平面BDD1B1所成角的正弦值为
所以答案是:

【考点精析】本题主要考查了空间角的异面直线所成的角的相关知识点,需要掌握已知为两异面直线,A,C与B,D分别是上的任意两点,所成的角为,则才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】椭圆C: =1的右焦点F,过焦点F的直线l0⊥x轴,P(x0 , y0)(x0y0≠0)为C上任意一点,C在点P处的切线为l,l与l0相交于点M,与直线l1:x=3相交于N.
(I) 求证;直线 =1是椭圆C在点P处的切线;
(Ⅱ)求证: 为定值,并求此定值;
(Ⅲ)请问△ONP(O为坐标原点)的面积是否存在最小值?若存在,请求出最小及此时点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】命题p:α∈R,sin(π﹣α)=cosα;命题q:“0<a<4”是“关于x的不等式ax2+ax+1>0的解集是实数集R”的充分必要条件,则下面结论正确的是(
A.p是假命题
B.q是真命题
C.“p∧q”是假命题
D.“p∨q”是假命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线上一点到其焦点的距离为4,椭圆 的离心率且过抛物线的焦点.

1)求抛物线和椭圆的标准方程;

(2)过点的直线交抛物线两不同点,交轴于点已知 求证: 为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】图是函数y=Asin(ωx+φ)(x∈R)在区间 上的图象,为了得到这个函数的图象,只要将y=sinx(x∈R)的图象上所有的点(

A.向左平移 个单位长度,再把所得各点的横坐标缩短到原来的 倍,纵坐标不变
B.向左平移 个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变
C.向左平移 个单位长度,再把所得各点的横坐标缩短到原来的 倍,纵坐标不变
D.向左平移 个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2016年上半年,股票投资人袁先生同时投资了甲、乙两只股票,其中甲股票赚钱的概率为 ,赔钱的概率是 ;乙股票赚钱的概率为 ,赔钱的概率为 .对于甲股票,若赚钱则会赚取5万元,若赔钱则损失4万元;对于乙股票,若赚钱则会赚取6万元,若赔钱则损失5万元.
(Ⅰ)求袁先生2016年上半年同时投资甲、乙两只股票赚钱的概率;
(Ⅱ)试求袁先生2016年上半年同事投资甲、乙两只股票的总收益的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】运行如图所示的程序框图,则输出的结果是(

A.e2016﹣e2015
B.e2017﹣e2016
C.e2015﹣1
D.e2016﹣1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正方形的中心为直线和直线的交点,其一边所在直线方程为

(1)写出正方形的中心坐标;

(2)求其它三边所在直线的方程(写出一般式).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l的参数方程为 (t为参数),曲线C的参数方程为 (θ为参数)
(1)以原点O为极点,以x轴正半轴为极轴(与直角坐标系xOy取相同的长度单位)建立极坐标系,若点P的极坐标为(4, ),判断点P与直线l的位置关系;
(2)设点Q是曲线C上的一个动点,利用曲线C的参数方程求Q到直线l的距离的最大值与最小值的差.

查看答案和解析>>

同步练习册答案