精英家教网 > 高中数学 > 题目详情
甲乙两人从4门课程中各选修两门,则甲乙所选的课程中至少有1门不相同的选法共有(  )种.
A、30B、36C、60D、72
考点:计数原理的应用
专题:应用题,排列组合
分析:“至少1门不同”包括两种情况,两门均不同和有且只有1门相同,再利用分步计数原理,即可求得结论.
解答: 解:甲、乙所选的课程中至少有1门不相同的选法可以分为两类:
1、甲、乙所选的课程中2门均不相同,甲先从4门中任选2门,乙选取剩下的2门,有C42C22=6种.
2、甲、乙所选的课程中有且只有1门相同,分为2步:①从4门中先任选一门作为相同的课程,有C41=4种选法;②甲从剩余的3门中任选1门乙从最后剩余的2门中任选1门有C31C21=6种选法,由分步计数原理此时共有C41C31C21=24种.
综上,由分类计数原理,甲、乙所选的课程中至少有1门不相同的选法共有6+24=30种.
故选:A.
点评:本题考查排列组合知识,合理分类、正确分步是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知cos2θ=
7
25
,其中0<θ<
π
2

(1)求tanθ的值
(2)求
2cos2
θ
2
-sinθ
2
sin(θ+
π
4
)
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

四棱锥P-ABCD中,PD⊥面ABCD,底面ABCD是菱形,且PD=DA=2,∠CDA=60°,过点B作直线l∥PD,Q为直线l上一动点
(1)求证:QP⊥AC;
(2)当二面角Q-AC-P的大小为120°时,求QB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个几何体的三视图如图所示(单位:cm),则该几何体的体积为
 
cm3

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直三棱柱ABC-A1B1C1中,∠ACB=90°,四边形BCC1B1是边长为4的正方形,直线AB与平面ACC1A1所成角的正切值为2,点D为棱AA1上的动点.
(I)当点D为何位置时,CD⊥平面B1C1D?
(II)当AD=2
2
时,求二面角B1-DC-C1的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

在建立两个变量y与x的回归模型中,分别选择了4个不同模型,模型1-4的R2分别为0.98,0.80,0.50,0.25,则其中拟合得最好的模型是(  )
A、模型1B、模型2
C、模型3D、模型4

查看答案和解析>>

科目:高中数学 来源: 题型:

若命题p:2n-1(n∈Z)是奇数;q:2n+1(n∈Z)是偶数,则下列说法中正确的是(  )
A、¬p为真B、¬q为假
C、p∨q为真D、p∧q为真

查看答案和解析>>

科目:高中数学 来源: 题型:

设双曲线M:
x2
a2
-
y2
b2
=1(a>0,b>0)的半焦距为c,且双曲线M与圆x2+y2=c2相交于A,B,C,D四点,若以A,B,C,D为顶点的四边形为正方形,则双曲线M的离心率等于(  )
A、2+
2
B、
2+
2
C、
2
+1
D、
2
+1

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
3
sin
πx
m
,若存在实数x0,使函数f(x)的图象关于直线x=x0对称且x02+[f(x0)]2<m2成立,则m的取值范围是(  )
A、(-1,1)
B、(-∞,-1)∪(1,+∞)
C、(-2,2)
D、(-∞,-2)∪(2,+∞)

查看答案和解析>>

同步练习册答案