【题目】在三棱锥中,和是边长为的等边三角形,,分别是的中点.
(Ⅰ)求证:∥平面;
(Ⅱ)求证:平面⊥平面;
(Ⅲ)求三棱锥的体积.
【答案】(Ⅰ)见解析(Ⅱ)见解析(Ⅲ)
【解析】本题主要考查直线与平面平行的判定,以及平面与平面垂直的判定和三棱锥的体积的计算,体积的求解在最近两年高考中频繁出现,值得重视.
(1)欲证OD∥平面PAC,根据直线与平面平行的判定定理可知只需证OD与平面PAC内一直线平行,而OD∥PA,PA平面PAC,OD平面PAC,满足定理条件;
(2)欲证平面PAB⊥平面ABC,根据面面垂直的判定定理可知在平面PAB内一直线与平面ABC垂直,而根据题意可得PO⊥平面ABC;
(3)根据OP垂直平面ABC得到OP为三棱锥P-ABC的高,根据三棱锥的体积公式可求出三棱锥P-ABC的体积.
解:(Ⅰ)分别为的中点,
∥
又平面,平面
∥平面. ………………5分
(Ⅱ)连结,
,为中点,,
⊥,.
同理, ⊥,.
又,,
,⊥.
⊥,⊥,,
⊥平面.
又平面,平面⊥平面.…………………10分
(Ⅲ)由(Ⅱ)可知垂直平面
为三棱锥的高,且
. …………………………14分
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C的对边分别为a,b,c,已知cosB=,a=5c.
(1)求sinC的值;
(2)若△ABC的面积S=sinAsinC,求b的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准(吨)、一位居民的月用水量不超过的部分按平价收费,超出的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5)分成9组,制成了如图所示的频率分布直方图.
(1)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;
(2)若该市政府希望使85%的居民每月的用水量不超过标准(吨),估计的值,并说明理由.
(3)利用分层抽样的方法在[0,0.5) [3.5,4) [4,4.5)三组中选取5位居民,再从这5位居民中任意取三人,求这三人恰有两人来自同一组的概率。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四边形是边长为的正方形, 平面, ,且, .
(I)求证: 平面.
(II)求与平面所成角的正弦值.
(III)为直线上一点,且平面平面,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列四个命题:
①“若为的极值点,则”的逆命题为真命题;
②“平面向量的夹角是钝角”的充分不必要条件是
③若命题,则
④函数在点处的切线方程为.
其中不正确的个数是
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若定义在上的函数,其图象是连续不断的,且存在常数使得对任意的实数都成立,则称是一个“特征函数”则下列结论中正确的个数为( ).
①是常数函数中唯一的“特征函数”;
②不是“特征函数”;
③“特征函数”至少有一个零点;
④是一个“特征函数”;.
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com