精英家教网 > 高中数学 > 题目详情
函数y=
ax2+8x+b
x2+1
的最大值为9,最小值为1,求实数a、b.
考点:函数的最值及其几何意义
专题:计算题,函数的性质及应用
分析:利用判别式法确定函数的最值,从而求参数a,b.
解答: 解:∵y=
ax2+8x+b
x2+1

∴yx2+y=ax2+8x+b;
故(a-y)x2+8x+b-y=0;
故△=64-4(a-y)(b-y)=0的两根为1,9;
故y2-(a+b)y+ab-16=0的两根为1,9;
1+9=a+b
9=ab-16

解得,a=b=5.
点评:本题考查了函数的最值的求法,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某机械厂生产一种产品,产品被测试指标大于或等于90为优等次,大于或等于80小于90为良等次,小于80为差等次.生产一件优等次产品盈利100元,生产一件良等次产品盈利60元,生产一件差等次产品亏损20元.现随机抽出高级技工甲和中级技工乙生产的这种产品各100件进行检测,结果统计如表:
测试指标[70,75)[75,80)[80,85)[85,90)[90,95)[95,100)
3720302515
51523272010
根据表中统计得到甲、乙两人生产这种产品为优、良、差等次的频率,现分别作为他们每次生产一件这种产品的等次互不受影响.
(1)计算高级技工甲生产三件产品,至少有2件优等品的概率;
(2)甲、乙各生产一件产品给工厂带来的利润之和记为X元(利润=盈利-亏损).求随机变量X的频率分布和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

过双曲线C:
x2
a2
-
y2
b2
=1
(a>0,b>0)的右顶点作x轴的垂线与C的一条渐近线相交于A.若以C的右焦点为圆心、半径为2的圆经过A、O两点(O为坐标原点),则双曲线C的方程为(  )
A、x2-
y2
3
=1
B、x2-
y2
4
=1
C、
x2
4
-
y2
12
=1
D、
x2
12
-
y2
4
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

在某次测验中,有6位同学的平均成绩为75分.用xn表示编号为n(n=1,2,…,6)的同学所得成绩,且前5位同学的成绩如下:
编号n12345
成绩xn7076727072
(1)求第6位同学的成绩x6,及这6位同学成绩的标准差s;
(2)从这6位同学中,随机地选3位,记成绩落在(70,75)的人数为ξ,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

为了解甲、乙两厂的产品质量,采用分层抽样的方法从甲、乙两厂生产的产品中分别抽取14件和5件,测量产品中的微量元素x,y的含量(单位:毫克)下表是乙厂的5件产品的测量数据:
编号12345
x160178166175180
y7580777081
(1)已知甲厂生产的产品共有98件,求乙厂生产的产品数量;
(2)若x≤160且y≤75为次品,从乙厂抽出的上述5件产品中,有放回的随机抽取1件产品,抽到次品则停止抽取,否则继续抽取,直到抽出次品为止,但抽取次数最多不超过3次,求抽取次数ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x、y满足约束条件
x-y+5≥0
x+y≥0
x≤3
,则z=2x+4y的最小值为(  )
A、-6B、5C、10D、-10

查看答案和解析>>

科目:高中数学 来源: 题型:

若α为第三象限角,则下列各式中不成立的是  (  )
A、tanα-sinα<0
B、sinα+cosα<0
C、cosα-tanα<0
D、tanαsinα<0

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c,且sin2A+sin2C-sinAsinC=sin2B.
(1)求角B的大小;    
(2)求2cos2A+cos(A-C)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题正确的是(  )
A、垂直于同一直线的两条直线互相平行
B、平行四边形在一个平面上的平行投影一定是平行四边形
C、平面截正方体所得的截面图形可能是正六边形
D、锐角三角形在一个平面上的平行投影不可能是钝角三角形

查看答案和解析>>

同步练习册答案