精英家教网 > 高中数学 > 题目详情
已知函数
(1)若函数时取得极值,求实数的值;
(2)若对任意恒成立,求实数的取值范围.
(1);(2).

试题分析:(1)先求导函数,进而根据题中条件得出,从可即可求解出的值,注意,根据函数在某点取得极值去求参数的值时,往往必须进行检验,也就是将所求得的的值代回原函数,看看是否真的在该点处取得极值,如果不是必须舍去,如果是则保留;(2)先将对任意恒成立等价转化为恒成立,进而求出导函数并进行因式分解得到,进而分两类分别确定的单调性,随之确定,然后分别求解不等式,解出的取值范围,最后取这两种情况下的的取值范围的并集即可.
(1),依题意有:,即
解得:
检验:当时,
此时:函数上单调递减,在上单调递增,满足在时取得极值
综上:                               5分
(2)依题意:对任意恒成立等价转化为恒成立 6分
因为
得:                      8分
时,函数恒成立,则单调递增,于是,解得:,此时:            10分
②当时,函数单调递减,在单调递增,于是,不合题意,此时:
综上所述:实数的取值范围是        12分.
说明:本题采用参数分离法或者先用必要条件缩小参数范围也可以.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知函数,其中.
(1)当时,求的单调递增区间;
(2)若在区间上的最小值为8,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数的图象过点P(0,2),且在点M(-1,)处的切线方程
(1)求函数的解析式;   
(2)求函数的图像有三个交点,求的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)若,求函数的极小值;
(2)设函数,试问:在定义域内是否存在三个不同的自变量使得的值相等,若存在,请求出的范围,若不存在,请说明理由?

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知f(x)=x3-6x2+9x-abc,a<b<c,且f(a)=f(b)=f(c)=0.现给出如下结论:
①f(0)f(1)>0;        ②f(0)f(1)<0;
③f(0)f(3)>0;        ④f(0)f(3)<0.
其中正确结论的序号是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数f(x)=(x-3)ex的单调递增区间是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)当时,求函数的极值;(2)当时,讨论的单调性。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


(1)若曲线在点处的切线方程为,求的值;
(2)当时,求的单调区间与极值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数内有极小值,则
A.B.C.D.

查看答案和解析>>

同步练习册答案