精英家教网 > 高中数学 > 题目详情
已知tanα=2,求下列各式的值.
(1)
cosα+sinαcosα-sinα
                    
(2)cos2α
分析:(1)将分子和分母同时除以cosα,把tanα的值代入即可求得答案;
(2)把所求式子的cos2α利用二倍角的余弦函数公式化简后,将所求式子的分母“1”变为sin2α+cos2α,然后分子分母都除以cos2α,利用同角三角函数间的基本关系即可得到关于tanα的关系式,把tanα的值代入即可求出值.
解答:解:(1)
cosα+sinα
cosα-sinα

=
1+tanα
1-tanα

=
1+2
1-2

=-3          
(2)cos2α=cos2θ-sin2θ
=
cos2α-sin2α
sin2α+cos2

=
1-tan2α
tan2α+1

=-
3
5
点评:此题考查学生灵活运用二倍角的余弦函数公式及同角三角函数间的基本关系化简求值,是一道基础题.做题时注意“1”的灵活变换.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知tanα=2,求
2cos2α+13sin2α+2
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tanα=2,求2sin2α-3sinαcosα+5cos2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tanα=2,求下列各式的值:
(1)
5sinα-3cosα
2cosα+2sinα
;                  
(2)
2sin2α-3cos2α
cosαsinα

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tanα=2,求下列各式的值:
(1)
2sinα-3sinα4sinα-9cosα
;    
(2)sin2α-3sinα•cosα+1.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知tanα=2,求
3sinα-2cosα
sinα+3cosα
+sin2α-3sinα•cosα的值.
(2)已知角α终边上一点P(-
3
,1),求
cos(
π
2
+α)sin(-π-α)
cos(
11π
2
-α)sin(
2
+α)
的值.

查看答案和解析>>

同步练习册答案