精英家教网 > 高中数学 > 题目详情
从0,1,2,3,4,5,6,7,8,9这10个数中取出3个数,使其和为不小于10的偶数,不同的取法有
51
51
种.
分析:求出从这10个数中取出3个偶数的方法数,取出1个偶数,2个奇数的方法,再列举取出3个数的和为小于10的偶数的方法数,即可求得结论.
解答:解:从这10个数中取出3个偶数的方法有
C
3
5
种,取出1个偶数,2个奇数的方法有
C
1
5
C
2
5
种,而取出3个数的和为小于10的偶数的方法有(0,2,4),(0,2,6),(0,1,3),(0,1,5),(0,1,7),(0,3,5),(2,1,3),(2,1,5),(4,1,3),共有9种,故不同的取法有10+50-9=51种
故答案为:51
点评:本题考查组合知识,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

7、从0,1,2,3,4,5,6,7,8,9十个数字中,选出一个偶数和三个奇数,组成一个没有重复数字的四位数,这样的四位数共有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

17、从0,1,2,3,4,5这六个数字组成的无重复数字的自然数,
求:(1)有多少个含有2,3,但它们不相邻的五位数?
(2)有多少个数字1,2,3必须由大到小顺序排列的六位数?

查看答案和解析>>

科目:高中数学 来源: 题型:

从0、1、2、3、4五个数字中任取4个,可组成没有重复数字的四位数的个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

从0、1、2、3、4这五个数字中任取四个,可构成无重复数字且1、2不相邻的四位数有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

从0,1,2,3,4,5,6中任取3个数字组成没有重复数字的3位数,基中能被5整除的数共有(  )

查看答案和解析>>

同步练习册答案