分析 (Ⅰ)通过将各项均用首项和公差(公比)表示出来,然后联立方程组,计算即得公差、公比,进而可得结论;
(2)通过(1),利用等差、等比数列的求和公式计算即得结论.
解答 解:(Ⅰ)∵a1=b1=1,a3+b3=9,a5+b5=25,
∴$\left\{\begin{array}{l}{(1+2d)+{q}^{2}=9}\\{(1+4d)+{q}^{4}=25}\end{array}\right.$,
整理得:q4-2q2-8=0,
解得:q2=4或q2=-2(舍),
又∵数列{bn}是各项都为正数的等比数列,
∴q=2,d=2,
∴an=2n-1,${b}_{n}={2}^{n-1}$;
(2)由(1)可知Sn=$\frac{n(1+2n-1)}{2}$=n2,Tn=$\frac{1-{2}^{n}}{1-2}$=2n-1.
点评 本题考查数列的通项及前n项和,注意解题方法的积累,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{3\sqrt{7}}}{7}$ | B. | $\frac{22}{5}$ | C. | $\frac{28}{5}$ | D. | $\frac{{10\sqrt{7}}}{7}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com