精英家教网 > 高中数学 > 题目详情

【题目】如图,在正四棱锥中, 分别为 的中点.

(Ⅰ)求证: 平面

(Ⅱ)求异面直线所成角的余弦值;

(Ⅲ)若平面与棱交于点,求的值.

【答案】(Ⅰ)见解析(Ⅱ)(Ⅲ)

【解析】试题分析:

(Ⅰ)设,则为底面正方形中心,连接.因为为正四棱锥,所以平面,所以.又,根据线面垂直的判定定理即可证明结果.(Ⅱ)因为 两两互相垂直,如图建立空间直角坐标系,然后再利用空间向量和法向量,即可求出结果;(Ⅲ)连接.设,其中,则,所以,设平面的法向量为,又,所以可得,因为平面,所以,据此即可求出结果.

试题解析:

(Ⅰ)设,则为底面正方形中心,连接

因为为正四棱锥,

所以平面

所以

,且

所以平面

(Ⅱ)因为 两两互相垂直,如图建立空间直角坐标系

,∴

,所以

. 

即异面直线所成角的余弦值为.

(Ⅲ)连接. 

,其中,则

所以

设平面的法向量为,又,所以

所以,令 ,所以

因为平面,所以

,解得,所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】对甲、乙两名自行车赛手在相同条件下进行了6次测试,测得他们的最大速度(单位:m/s)的数据如下:

(1)画出茎叶图

(2)分别求出甲、乙两名自行车赛手最大速度(m/s)数据的平均数、极差、方差,并判断选谁参加比赛比较合适?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(Ⅰ)当时,令 为常数,求函数的零点的个数;

(Ⅱ)若不等式上恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某出租车公司响应国家节能减排的号召,已陆续购买了140辆纯电动汽车作为运营车辆,目前我国主流纯电动汽车按续航里程数单位:公里分为3类,即类:类: 类:,该公司对这140辆车的行驶总里程进行统计,结果如下表:

类型

已行驶总里程不超过10万公里的车辆数

10

40

30

已行驶总里程超过10万公里的车辆数

20

20

20

(1)从这140辆汽车中任取一辆,求该车行驶总里程超过10万公里的概率;

(2)公司为了了解这些车的工作状况,决定抽取了14辆车进行车况分析,按表中描述的六种情况进行分层抽样,设从类车中抽取了辆车.

的值;

如果从这辆车中随机选取两辆车,求恰有一辆车行驶总里程超过10万公里的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场为吸引顾客消费推出一项优惠活动.活动规则如下:消费额每满100元可转动如图所示的转盘一次,并获得相应金额的返券,假定指针等可能地停在任一位置.若指针停在A区域返券60元;停在B区域返券30元;停在C区域不返券.例如:消费218元,可转动转盘2次,所获得的返券金额是两次金额之和.

1)若某位顾客消费128元,求返券金额不低于30元的概率;

2)若某位顾客恰好消费280元,并按规则参与了活动,他获得返券的金额记为(元).求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在等比数列{an}中,公比q≠1,等差数列{bn}满足b1=a1=3,b4=a2 , b13=a3
(1)求数列{an}与{bn}的通项公式;
(2)记cn=(﹣1)nbn+an , 求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知实数满足约束条件,则的取值范围是(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,是等边三角形,是等腰直角三角形,,平面平面平面,点的中点,连接

(1)求证:平面

(2)若,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆的半径为,圆心在第一象限,且与直线轴都相切.

Ⅰ)求圆的方程.

Ⅱ)过的直线与圆相交所得的弦长为,求直线的方程.

查看答案和解析>>

同步练习册答案