精英家教网 > 高中数学 > 题目详情
17.已知一条曲线C在y轴右边,C上每一点到点F(1,0)的距离减去它到y轴的距离的差都是1.
(1)求曲线C的方程;
(2)若以F为圆心的圆与直线4x+3y+1=0相切,过点F任作直线l交曲线C于A,B两点,由点A,B分别向圆F引一条切线,切点分别为P,Q,记α=∠PAF,β=∠QBF,求证:sinα+sinβ是定值.

分析 (1)抛物线的定义,即可求曲线C的方程;
(2)对直线l的斜率分存在和不存在两种情况:把直线的方程与抛物线的方程联立,利用根与系数的关系及抛物线的定义即可得出.

解答 解:(1)∵一条曲线C在y轴右边,C上每一点到点F(1,0)的距离减去它到y轴的距离的差都是1,
∴点的轨迹是以F为焦点,x=-1为准线的抛物线,
∴点M的轨迹C的方程为y2=4x(x≠0);
(2)当l不与x轴垂直时,设直线l的方程为y=k(x-1),
代入抛物线方程,整理得k2x2-(2k2+4)x+k2=0,
设A(x1,y1),B(x2,y2),
则x1+x2=2+$\frac{4}{{k}^{2}}$,x1x2=1,
∴sinα+sinβ=$\frac{1}{|AF|}+\frac{1}{|BF|}$=$\frac{{x}_{1}+{x}_{2}+2}{{x}_{1}{x}_{2}+{x}_{1}{+x}_{2}+1}$=1.
当l与x轴垂直时,也可得sinα+sinβ=1,
综上,有sinα+sinβ=1.

点评 熟练掌握直线的方程与抛物线的方程联立并利用根与系数的关系及抛物线的定义是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.设变量x,y满足约束条件$\left\{\begin{array}{l}y≥x\\ x+3y≤4\\ x≥-2\end{array}\right.$,则满足条件的可行域的面积为6,z=|x-3y|的最大值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.永泰某景区为提高经济效益,现对某一景点进行改造升级,从而扩大内需,提高旅游增加值,经过市场调查,旅游增加值y万元与投入x(x≥10)万元之间满足:y=f(x)=ax2+$\frac{101}{50}$x-bln$\frac{x}{10}$,a,b为常数.当x=10万元时,y=19.2万元;当x=30万元时,y=50.5万元.(参考数据:ln2=0.7,ln3=1.1,ln5=1.6).
(1)求f(x)的解析式;
(2)求该景点改造升级后旅游利润T(x)的最大值.(利润=旅游增加值-投入).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点为F1、F2,离心率为$\frac{\sqrt{3}}{3}$,过F2的直线l交C与A、B两点,若△AF1B的周长为$8\sqrt{3}$,则C的方程为(  )
A.$\frac{{x}^{2}}{3}$+$\frac{{y}^{2}}{2}$=1B.$\frac{{x}^{2}}{3}$+y2=1C.$\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{4}$=1D.$\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{8}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.化简:$\frac{{{a^2}+2ab+{b^2}}}{{{a^2}-{b^2}}}$-$\frac{b}{a-b}$的结果是(  )
A.$\frac{a}{a-b}$B.$\frac{b}{a-b}$C.$\frac{a}{a+b}$D.$\frac{b}{a+b}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.当实数a为何值时z=a2-2a+(a2-3a+2)i.
(1)为纯虚数;
(2)为实数;
(3)对应的点在第一象限.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设函数f(x)的导函数为f′(x),若对任意x∈R都有f′(x)>f(x)成立,则(  )
A.f(ln2016)<2016f(0)
B.f(ln2016)=2016f(0)
C.f(ln2016)>2016f(0)
D.f(ln2016)与2016f(0)的大小关系不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图数表:$({\begin{array}{l}{{a_{11}}}&{{a_{12}}}&…&{{a_{1n}}}\\{{a_{21}}}&{{a_{22}}}&…&{{a_{2n}}}\\…&…&…&…\\{{a_{n1}}}&{{a_{n2}}}&…&{{a_{nn}}}\end{array}})$,每一行都是首项为1的等差数列,第m行的公差为dm,且每一列也是等差数列,设第m行的第k项为amk(m,k=1,2,3,…,n,n≥3,n∈N*).
(1)证明:d1,d2,d3成等差数列,并用m,d1,d2表示dm(3≤m≤n);
(2)当d1=1,d2=3时,将数列{dm}分组如下:
(d1),(d2,d3,d4),(d5,d6,d7,d8,d9),…(每组数的个数构成等差数列).设前m组中所有数之和为${({c_m})^4}({c_m}>0)$,求数列$\{{2^{c_m}}{d_m}\}$的前n项和Sn
(3)在(2)的条件下,设N是不超过20的正整数,当n>N时,求使得不等式$\frac{1}{50}({S_n}-6)>{d_n}$恒成立的所有N的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\frac{1}{x}$+alnx(a≠0,a∈R)
(1)当a=1时,求函数f(x)在x=2处的切线斜率及函数f(x)的单减区间;
(2)若对于任意x∈(0,e],都有f(x)>0,求实数a的取值范围;
(3)若函数g(x)=x(lnx-1),对于任意x1∈(0,e],总存在x2∈(0,e],使得g(x1)>f(x2),求实数a的取值范围.

查看答案和解析>>

同步练习册答案