精英家教网 > 高中数学 > 题目详情
6.如图数表:$({\begin{array}{l}{{a_{11}}}&{{a_{12}}}&…&{{a_{1n}}}\\{{a_{21}}}&{{a_{22}}}&…&{{a_{2n}}}\\…&…&…&…\\{{a_{n1}}}&{{a_{n2}}}&…&{{a_{nn}}}\end{array}})$,每一行都是首项为1的等差数列,第m行的公差为dm,且每一列也是等差数列,设第m行的第k项为amk(m,k=1,2,3,…,n,n≥3,n∈N*).
(1)证明:d1,d2,d3成等差数列,并用m,d1,d2表示dm(3≤m≤n);
(2)当d1=1,d2=3时,将数列{dm}分组如下:
(d1),(d2,d3,d4),(d5,d6,d7,d8,d9),…(每组数的个数构成等差数列).设前m组中所有数之和为${({c_m})^4}({c_m}>0)$,求数列$\{{2^{c_m}}{d_m}\}$的前n项和Sn
(3)在(2)的条件下,设N是不超过20的正整数,当n>N时,求使得不等式$\frac{1}{50}({S_n}-6)>{d_n}$恒成立的所有N的值.

分析 (1)根据第三行成等差数列得出a3n,根据最后一列成等差数列得出a3n,从而得出d1,d2,d3的关系,同理根据amn的不同算法即可得出dm关于m,d1,d2的式子;
(2)根据分组特点计算cm,利用错位相减法计算Sn
(3)把Sn,dn代入不等式求出使不等式成立的n的最小值即可得出N的最小值.

解答 解:(1)∵每一行都是首项为1的等差数列,
∴a1n=1+(n-1)d1,a2n=1+(n-1)d2,a3n=1+(n-1)d3
∵每一列也是等差数列,∴2a2n=a1n+a3n
∴2+2(n-1)d2=1+(n-1)d1+1+(n-1)d3,即2d2=d1+d3
∴d1,d2,d3成等差数列.
∵amn=1+(n-1)dm
amn=a1n+(m-1)(a2n-a1n)=a1n+(m-1)(a2n-a1n)=1+(n-1)d1+(m-1)(n-1)(d2-d1),
∴1+(n-1)dm=1+(n-1)d1+(m-1)(n-1)(d2-d1
化简得dm=(2-m)d1+(m-1)d2
(2)当d1=1,d2=3时,dm=2m-1(m∈N*),
按数列{dm}分组规律,第m组中有2m-1个数,
所以第1组到第m组共有1+3+5+…+(2m-1)=m2个数.
则前m组的所有数字和为$\frac{{1+(2{m^2}-1)}}{2}•{m^2}={m^4}$,
∴${({c_m})^4}={m^4}$,∵cm>0,∴cm=m,
从而 ${2^{c_m}}{d_m}=(2m-1)•{2^m}$,m∈N*,
∴Sn=1×2+3×22+5×23+…+(2n-1)×2n
∴2Sn=1×22+3×23+…+(2n-1)×2n+1
∴-Sn=2+23+24+…+2n+1-(2n-1)×2n+1=2+23(2n-1-1)-(2n-1)×2n+1=(3-2n)×2n+1-6.
∴${S_n}=(2n-3)•{2^{n+1}}+6$.
(3)由$\frac{1}{50}({S_n}-6)>{d_n}$得(2n-3)•2n+1>50(2n-1).
令an=(2n-3)•2n+1-50(2n-1)=(2n-3)(2n+1-50)-100.
∴当n≤5时,an<0,当n≥6时,an>0,
所以,满足条件的所有正整数N=5,6,7,8,…,20.

点评 本题考查了等差数列的性质,数列求和,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=|tanx|,则函数y=f(x)+log4x-1的零点个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知一条曲线C在y轴右边,C上每一点到点F(1,0)的距离减去它到y轴的距离的差都是1.
(1)求曲线C的方程;
(2)若以F为圆心的圆与直线4x+3y+1=0相切,过点F任作直线l交曲线C于A,B两点,由点A,B分别向圆F引一条切线,切点分别为P,Q,记α=∠PAF,β=∠QBF,求证:sinα+sinβ是定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知复数$z=cos\frac{2π}{3}+isin\frac{2π}{3}$(i为虚数单位),则z3的虚部是(  )
A.0B.-1C.iD.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图:已知四棱锥P-ABCD,底面是边长为6的正方形,PA=8,PA⊥面ABCD,
点M是CD的中点,点N是PB的中点,连接AM、AN、MN.
(1)求证:AB⊥MN;
(2)求二面角N-AM-B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关.现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,在将两组工人的日平均生产件数分成5组:[50,60),[60,70),[70,80),[80,90),[90,100)分别加以统计,得到如图所示的频率分布直方图.

(1)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的概率.
(2)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成2×2的列联表,并判断是否有90% 的把握认为“生产能手与工人所在的年龄组有关”?
附:x2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1+}{n}_{2+}{n}_{+1}{n}_{+2}}$
 P(x2≥k) 0.100 0.050 0.010 0.001
 k 2.706 3.841 6.635 10.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在△ABC中,若a2cosAsinB=b2cosBsinA,试判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC中,内角A,B,C所对的三边分别是a,b,c,已知a=3$\sqrt{2},b=6,A=\frac{π}{6}$,求c.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知点A(6,$\frac{π}{6}$)和B(10,$\frac{π}{6}$),则A,B两点间的距离为4.

查看答案和解析>>

同步练习册答案