精英家教网 > 高中数学 > 题目详情
11.某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关.现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,在将两组工人的日平均生产件数分成5组:[50,60),[60,70),[70,80),[80,90),[90,100)分别加以统计,得到如图所示的频率分布直方图.

(1)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的概率.
(2)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成2×2的列联表,并判断是否有90% 的把握认为“生产能手与工人所在的年龄组有关”?
附:x2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1+}{n}_{2+}{n}_{+1}{n}_{+2}}$
 P(x2≥k) 0.100 0.050 0.010 0.001
 k 2.706 3.841 6.635 10.828

分析 (1)根据分层抽样,求得样本中有25周岁以上组工人60名,25周岁以下组工人40人,由频率分布直方图日平均生产件数不足60件的工人中25周岁以上组有3人,25周岁以下组有2人,随机抽取2人,求得所有可能的结果,根据古典概型公式求得至少抽到一名“25周岁以下组”工人的概率;
(2)据2×2列联表,代入求临界值的公式,求出观测值,利用观测值同临界值表进行比较,K2≈1.786<2.706,没有90%的把握认为“生产能手与工人所在的年龄组有关”.

解答 解:(1)由已知得:样本中有25周岁以上组工人60名,25周岁以下组工人40人,
所以样本中日平均生产件数不足60件的工人中25周岁以上组有60×0.05=3人,分别记为:A1,A2,A3
25周岁以下组有工人40×0.05=2人,分别记为B1,B2
从中随机抽取2人,所有可能的结果共10种,他们分别是(A1,A2),(A1,A3),(A2,A3),(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B2),(A3,B2),(B1,B2),
其中“至少有1名”,25周岁以下组的结果有7种,
故所求概率为P=$\frac{7}{10}$;
(2)由频率分别直方图可知:在抽取的100名工人中,
“25周岁以上组”中的生产能手60×0.25=15人,
“25周岁以下组”中的生产能手40×0.375=15人,
据此可得2×2列联表:

生产能手非生产能手合计
25周岁以上组154560
25周岁以下组152540
合计3070100
所以K2=$\frac{100×(15×25-45×15)^{2}}{60×40×30×70}$≈1.786<2.706.
所以没有90%的把握认为“生产能手与工人所在的年龄组有关”.

点评 本题考查根据频率分布直方图的应用,考查独立性检验的概率情况,以及随机分布的概率的计算,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\frac{1}{3}$x3+mx2-3m2x+1
(1)当m=1时,求曲线y=f(x)在点(2,f(2))处的切线方程
(2)若f(x)在区间(-2,3)上是减函数,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.当实数a为何值时z=a2-2a+(a2-3a+2)i.
(1)为纯虚数;
(2)为实数;
(3)对应的点在第一象限.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在极坐标系中,将圆ρ=2沿着极轴正方向平移两个单位后,再绕极点逆时针旋转$\frac{π}{4}$弧度,则所得的曲线的极坐标方程为ρ=4cos(θ-$\frac{π}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图数表:$({\begin{array}{l}{{a_{11}}}&{{a_{12}}}&…&{{a_{1n}}}\\{{a_{21}}}&{{a_{22}}}&…&{{a_{2n}}}\\…&…&…&…\\{{a_{n1}}}&{{a_{n2}}}&…&{{a_{nn}}}\end{array}})$,每一行都是首项为1的等差数列,第m行的公差为dm,且每一列也是等差数列,设第m行的第k项为amk(m,k=1,2,3,…,n,n≥3,n∈N*).
(1)证明:d1,d2,d3成等差数列,并用m,d1,d2表示dm(3≤m≤n);
(2)当d1=1,d2=3时,将数列{dm}分组如下:
(d1),(d2,d3,d4),(d5,d6,d7,d8,d9),…(每组数的个数构成等差数列).设前m组中所有数之和为${({c_m})^4}({c_m}>0)$,求数列$\{{2^{c_m}}{d_m}\}$的前n项和Sn
(3)在(2)的条件下,设N是不超过20的正整数,当n>N时,求使得不等式$\frac{1}{50}({S_n}-6)>{d_n}$恒成立的所有N的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知a,b,c是锐角△ABC三个内角A,B,C的对边,$\overrightarrow{p}$=(a+c,b-c),$\overrightarrow{q}$=(b,a-c),$\overrightarrow{p}$∥$\overrightarrow{q}$.
(Ⅰ)求A;
(Ⅱ)若a=2,求b-c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.计算:sin21°cos39°+cos21°sin39°=$\frac{{\sqrt{3}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.不等式$\frac{3x-1}{x-2}$≤0的解集为(  )
A.{ x|$\frac{1}{3}$≤x≤2}B.{ x|$\frac{1}{3}$≤x<2}C.{ x|x>2或 x≤$\frac{1}{3}$}D.{ x|x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.如图,∠BAC的平分线与BC和外接圆分别相交于D和E,延长AC交过D、E、C三点的圆于点F.若AE=6,EF=3,则AF•AC的值为27.

查看答案和解析>>

同步练习册答案