精英家教网 > 高中数学 > 题目详情
16.已知a,b,c是锐角△ABC三个内角A,B,C的对边,$\overrightarrow{p}$=(a+c,b-c),$\overrightarrow{q}$=(b,a-c),$\overrightarrow{p}$∥$\overrightarrow{q}$.
(Ⅰ)求A;
(Ⅱ)若a=2,求b-c的取值范围.

分析 (Ⅰ)由已知,利用向量共线的性质可得(a+c)(a-c)=b(b-c),整理可得:b2+c2-a2=bc,由余弦定理可得cosA=$\frac{1}{2}$,结合A的范围即可得解A的值.
(Ⅱ)由已知及正弦定理可得:$\frac{2}{\frac{\sqrt{3}}{2}}$=$\frac{b}{sinB}=\frac{c}{sinC}$,从而利用三角函数恒等变换的应用可得b-c=$\frac{4\sqrt{3}}{3}$(sinB-sinC)=$\frac{4\sqrt{3}}{3}$sin(B-$\frac{π}{3}$),结合范围B-$\frac{π}{3}$∈(-$\frac{π}{3}$,$\frac{π}{6}$),利用正弦函数的性质即可得解.

解答 解:(Ⅰ)∵$\overrightarrow{p}$=(a+c,b-c),$\overrightarrow{q}$=(b,a-c),$\overrightarrow{p}$∥$\overrightarrow{q}$.
∴(a+c)(a-c)=b(b-c),整理可得:b2+c2-a2=bc,
∴由余弦定理可得:cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{bc}{2bc}$=$\frac{1}{2}$,
∵A∈(0,π),
∴A=$\frac{π}{3}$.
(Ⅱ)∵a=2,A=$\frac{π}{3}$,
∴由正弦定理可得:$\frac{2}{\frac{\sqrt{3}}{2}}$=$\frac{b}{sinB}=\frac{c}{sinC}$,
∴b-c=$\frac{4\sqrt{3}}{3}$(sinB-sinC)=$\frac{4\sqrt{3}}{3}$[sinB-sin($\frac{2π}{3}$-B)]=$\frac{4\sqrt{3}}{3}$[sinB-$\frac{\sqrt{3}}{2}$cosB-$\frac{1}{2}$sinB]=$\frac{4\sqrt{3}}{3}$[$\frac{1}{2}$sinB-$\frac{\sqrt{3}}{2}$cosB]=$\frac{4\sqrt{3}}{3}$sin(B-$\frac{π}{3}$),
∵B∈(0,$\frac{π}{2}$),B-$\frac{π}{3}$∈(-$\frac{π}{3}$,$\frac{π}{6}$),可得:sin(B-$\frac{π}{3}$)∈(-$\frac{\sqrt{3}}{2}$,$\frac{1}{2}$),
∴b-c=$\frac{4\sqrt{3}}{3}$sin(B-$\frac{π}{3}$)∈(-2,$\frac{2\sqrt{3}}{3}$).

点评 本题主要考查了平面向量共线的性质,余弦定理,正弦定理,三角函数恒等变换的应用,正弦函数的图象和性质在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知Sn是等差数列{an}的前n项和,若a1=-2016,$\frac{{{S_{2016}}}}{2016}-\frac{{{S_{2010}}}}{2010}=6$,则S2014等于(  )
A.2 013B.-6042C.-4 026D.4 026

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.对于中国足球参与的某次大型赛事,有三名观众对结果作如下猜测:
甲:中国非第一名,也非第二名;
乙:中国非第一名,而是第三名;
丙:中国非第三名,而是第一名.
竞赛结束后发现,一人全猜对,一人猜对一半,一人全猜错,则中国足球队得了第一名.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.关于x的方程:4x•|4x-2|=3的解为x=log43.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关.现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,在将两组工人的日平均生产件数分成5组:[50,60),[60,70),[70,80),[80,90),[90,100)分别加以统计,得到如图所示的频率分布直方图.

(1)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的概率.
(2)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成2×2的列联表,并判断是否有90% 的把握认为“生产能手与工人所在的年龄组有关”?
附:x2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1+}{n}_{2+}{n}_{+1}{n}_{+2}}$
 P(x2≥k) 0.100 0.050 0.010 0.001
 k 2.706 3.841 6.635 10.828

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.将y=sinx的图象沿x轴均匀的压缩为y′=sin3x′,则坐标变换公式是(  )
A.$\left\{\begin{array}{l}x=3x'\\ y=y'\end{array}\right.$B.$\left\{\begin{array}{l}x=\frac{1}{3}x'\\ y=y'\end{array}\right.$C.$\left\{\begin{array}{l}x=x'\\ y=3y'\end{array}\right.$D.$\left\{\begin{array}{l}x=x'\\ y=\frac{1}{3}y'\end{array}\right.$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a9+a9=(  )
A.28B.76C.123D.199

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.(1)已知函数f(x)=x2-(2a+1)x+alnx.当a=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)已知函数f(x)=$\frac{1}{2}$x3-$\frac{3}{2}$x,求过点(2,1)且与函数f(x)图象相切的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=lnx+$\frac{a}{x-1}$(a为常数),若函数y=f(x)在(e,+∞)内有极值,求实数a的取值范围.

查看答案和解析>>

同步练习册答案