精英家教网 > 高中数学 > 题目详情
1.将y=sinx的图象沿x轴均匀的压缩为y′=sin3x′,则坐标变换公式是(  )
A.$\left\{\begin{array}{l}x=3x'\\ y=y'\end{array}\right.$B.$\left\{\begin{array}{l}x=\frac{1}{3}x'\\ y=y'\end{array}\right.$C.$\left\{\begin{array}{l}x=x'\\ y=3y'\end{array}\right.$D.$\left\{\begin{array}{l}x=x'\\ y=\frac{1}{3}y'\end{array}\right.$

分析 设出在伸缩变换前后的坐标,对比曲线变换前后的解析式就可以求出此伸缩变换.

解答 解:设曲线y=sin3x上任意一点(x′,y′),变换前的坐标为(x,y),
根据曲线y=sinx变为曲线y′=sin3x′,
则$\left\{\begin{array}{l}{3x′=x}\\{y′=y}\end{array}\right.$,即$\left\{\begin{array}{l}{x=3x′}\\{y=y′}\end{array}\right.$,
故选A.

点评 本题主要考查了伸缩变换的有关知识,以及图象之间的联系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.执行如图的程序框图,输出的S为(  )
A.25B.30C.55D.91

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.某实验室至少需要某种化学药品10kg,现在市场上出售的该药品有两种包装,一种是每袋3kg,价格为12元;另一种是每袋2kg,价格为10元.但由于保质期的限制,每一种包装购买的数量都不能超过5袋,则在满足需要的条件下,花费最少(  )
A.56B.42C.44D.54

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知P($\sqrt{2}$,$\sqrt{3}$)在双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{3}$=1,其左、右焦点分别为F1、F2,△PF1F2的内切圆与x轴相切于点M,则$\overrightarrow{MP}$•$\overrightarrow{M{F}_{2}}$的值为(  )
A.$\sqrt{3}$+1B.$\sqrt{2}$-1C.$\sqrt{2}$+1D.$\sqrt{3}$-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知a,b,c是锐角△ABC三个内角A,B,C的对边,$\overrightarrow{p}$=(a+c,b-c),$\overrightarrow{q}$=(b,a-c),$\overrightarrow{p}$∥$\overrightarrow{q}$.
(Ⅰ)求A;
(Ⅱ)若a=2,求b-c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.等差数列{an}的前n项和${S_n}=2{n^2}-13n$,则数列{|an|}的前10项和等于112.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若函数f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$ax2+(a-1)x+1在区间(7,+∞)上为增函数,则实数a的取值范围是a≤8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知不等式|2x-t|-1<0的解集为(0,1),则t的值为(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.由tan(α+β)=$\frac{tanα+tanβ}{1-tanα•tanβ}$,可得:tanα+tanβ=tan(α+β)[1-tanα•tanβ],根据此推理及公式解决下列问题:
(1)若A+B=225°,则(1+tanA)(1+tanB)2
(2)不用计算器求值:(1+tan1°)(1+tan2°)(1+tan3°)•…•(1+tan44°)=222

查看答案和解析>>

同步练习册答案