精英家教网 > 高中数学 > 题目详情
11.执行如图的程序框图,输出的S为(  )
A.25B.30C.55D.91

分析 根据框图的流程依次计算程序运行的结果,直到满足条件i>5,计算输出S的值即可得解.

解答 解:模拟执行程序,可得
S=0,i=1
第一次运行循环体,S=12,i=2;
第二次运行循环体,S=12+22,i=3;
第三次运行循环体,S=12+22+32,i=4;
第四次运行循环体,S=12+22+32+42,i=5;
第五次运行循环体,S=12+22+32+42+52,i=6;
此时,满足条件i>5,程序终止运行,输出S=12+22+32+42+52=55.
故选:C.

点评 本题考查了循环结构的程序框图,根据框图的流程依次计算程序运行的结果是解答此类问题的常用方法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=sin(${\frac{π}{2}$-x)sinx-$\sqrt{3}$cos2x.
(1)求f(x)的单调递增区间;
(2)若x∈[${\frac{π}{6}$,$\frac{2π}{3}}$],求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥CD,∠BCD=90°.
(1)求证:BC⊥平面PDC;
(2)求点A到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若函数f(x)=x2+a|x-$\frac{1}{2}$|在[0,+∞)上单调递增,则实数a的取值范围是(  )
A.[-2,0]B.[-4,0]C.[-1,0]D.[-$\frac{1}{2}$,0]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知Sn是等差数列{an}的前n项和,若a1=-2016,$\frac{{{S_{2016}}}}{2016}-\frac{{{S_{2010}}}}{2010}=6$,则S2014等于(  )
A.2 013B.-6042C.-4 026D.4 026

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若函数f(x)=2sin(ωx-$\frac{π}{3}$)(0<ω<π),且f(2+x)=f(2-x),则ω的值为$\frac{5π}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率为2,焦点与椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1的焦点相同,则双曲线的渐近线方程为(  )
A.y=±$\frac{3}{2}$xB.y=±$\frac{\sqrt{3}}{2}$xC.y=±$\frac{\sqrt{3}}{3}$xD.y=±$\sqrt{3}$x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.函数$f(x)=\frac{1}{2}{x^2}-alnx$,已知函数y=f(x)的图象在点P(2,f(2))处的切线方程为l:y=x+b.
(1)求出函数y=f(x)的表达式和切线l方程;
(2)当$x∈[\frac{1}{e},e]$时(其中e=2.71828…),不等式f(x)<k恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.将y=sinx的图象沿x轴均匀的压缩为y′=sin3x′,则坐标变换公式是(  )
A.$\left\{\begin{array}{l}x=3x'\\ y=y'\end{array}\right.$B.$\left\{\begin{array}{l}x=\frac{1}{3}x'\\ y=y'\end{array}\right.$C.$\left\{\begin{array}{l}x=x'\\ y=3y'\end{array}\right.$D.$\left\{\begin{array}{l}x=x'\\ y=\frac{1}{3}y'\end{array}\right.$

查看答案和解析>>

同步练习册答案