| A. | [-2,0] | B. | [-4,0] | C. | [-1,0] | D. | [-$\frac{1}{2}$,0] |
分析 去绝对值,由已知条件知,函数x2+ax-a在[1,+∞)单调递增,x2-ax+a在[0,1)单调递增,得到关于a的不等式组,解该不等式组即得a的取值范围.
解答 解:f(x)=x2+a|x-$\frac{1}{2}$|=$\left\{\begin{array}{l}{{x}^{2}+ax-\frac{1}{2}a,x≥\frac{1}{2}}\\{{x}^{2}-ax+\frac{1}{2}a,x<1}\end{array}\right.$,
要使f(x)在[0,+∞)上单调递增,则:
$\left\{\begin{array}{l}{-\frac{a}{2}≤\frac{1}{2}}\\{\frac{a}{2}≤0}\end{array}\right.$,得-1≤a≤0,
∴实数a的取值范围是[-1,0],
故选:C.
点评 考查含绝对值函数的单调性,二次函数的单调性及单调区间.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{4}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{6}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}$+1 | B. | $\sqrt{2}$-1 | C. | $\sqrt{2}$+1 | D. | $\sqrt{3}$-1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com