精英家教网 > 高中数学 > 题目详情
4.某种种子每粒发芽的概率有都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X,则X的数学期望为200.

分析 判断概率的类型,利用独立重复试验求解X的数学期望即可.

解答 解:X的数学期望概率符合X~B(n,p)分布:n=1000,p=0.1,
∴E(X)=2×1000×0.1=200.
故答案为:200.

点评 本题考查独立重复试验的数学期望的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.如图,在直二面角E-AB-C中,四边形ABEF是矩形,AB=2,AF=2$\sqrt{3}$,△ABC是以A为直角顶点的等腰直角三角形,点P是线段BF上的一点,PF=3.
(Ⅰ)证明:BF⊥面PAC;
(Ⅱ)求二面角A-BC-P的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1,F2,P为双曲线上任一点.且$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$的最小值的取值范围是[-$\frac{3}{4}$c2,-$\frac{1}{2}$c2],则该双曲线的离心率的取值范围为$\sqrt{2}$≤e≤2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:
日期1月10日2月10日3月10日4月10日5月10日6月10日
昼夜温差x(℃)1011131286
就诊人数y(人)222529261612
该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.
(1)求选取的2组数据恰好是相邻两个月的概率;
(2)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出y关于x的线性回归方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若函数f(x)=x2+a|x-$\frac{1}{2}$|在[0,+∞)上单调递增,则实数a的取值范围是(  )
A.[-2,0]B.[-4,0]C.[-1,0]D.[-$\frac{1}{2}$,0]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.某产品分甲、乙、丙三级,其中乙、丙两级均属次品,若生产中出现乙级品的概率为0.03,丙级品的概率为0.02,则抽查一件产品是正品的概率为0.95.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若函数f(x)=2sin(ωx-$\frac{π}{3}$)(0<ω<π),且f(2+x)=f(2-x),则ω的值为$\frac{5π}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.解方程:$\frac{1}{2x-1}$=$\frac{1}{2}-\frac{3}{4x-2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若sinα=-$\frac{4}{5}$,α是第三象限的角,则$sin(α+\frac{π}{4})$=(  )
A.-$\frac{{7\sqrt{2}}}{10}$B.$\frac{{7\sqrt{2}}}{10}$C.$-\frac{{\sqrt{2}}}{10}$D.$\frac{{\sqrt{2}}}{10}$

查看答案和解析>>

同步练习册答案