精英家教网 > 高中数学 > 题目详情
19.过抛物线y2=4x的焦点F的直线分别交抛物线于A,B两点,交直线x=-1于点P.若$\overrightarrow{PA}$=λ$\overrightarrow{AF}$,$\overrightarrow{PB}$=μ$\overrightarrow{BF}$(λ,μ∈R),则λ+μ=0.

分析 设A,B在准线上的射影分别为C,D,则|AC|=|AF|,|BD|=|BF|,利用$\overrightarrow{PA}$=λ$\overrightarrow{AF}$,$\overrightarrow{PB}$=μ$\overrightarrow{BF}$,可得|PA|=-λ|AC|,|PB|=μ|BD|,利用三角函数的定义,即可得出结论.

解答 解:设A,B在准线上的射影分别为C,D,则|AC|=|AF|,|BD|=|BF|,
∵$\overrightarrow{PA}$=λ$\overrightarrow{AF}$,$\overrightarrow{PB}$=μ$\overrightarrow{BF}$,
∴|PA|=-λ|AC|,|PB|=μ|BD|,
∴-λ=$\frac{1}{cos∠CAP}$,μ=$\frac{1}{cos∠DBP}$,
∵∠CAP=∠DBP,
∴λ+μ=0.
故答案为:0.

点评 本题考查抛物线的定义,考查向量知识的运用,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.设函数f(x)=$\frac{{\sqrt{3}}}{2}$cos2x+sin2(x+$\frac{π}{4}}$).
(Ⅰ)求f(x)的最小正周期和单调递增区间;
(Ⅱ)当x∈[-$\frac{π}{12}$,$\frac{5π}{12}}$)时,求f(x)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若关于x的方程(1-m)x2+2mx-1=0的所有根都是正实数,则实数m的取值范围是m≥1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知f(x)=$\left\{\begin{array}{l}{2(x>1)}\\{-1(x≤1)}\end{array}\right.$,则不等式x+2xf(x+1)>5的解集为(  )
A.(1,+∞)B.(-∞,-5)∪(1,+∞)C.(-∞,-5)∪(0,+∞)D.(-5,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图,三棱锥P-ABC的棱长都相等,D是棱AB的中点,则直线PD与直线BC所成角的余弦值为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{3}}{6}$D.$\frac{\sqrt{6}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在直二面角E-AB-C中,四边形ABEF是矩形,AB=2,AF=2$\sqrt{3}$,△ABC是以A为直角顶点的等腰直角三角形,点P是线段BF上的一点,PF=3.
(Ⅰ)证明:BF⊥面PAC;
(Ⅱ)求二面角A-BC-P的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=sin(${\frac{π}{2}$-x)sinx-$\sqrt{3}$cos2x.
(1)求f(x)的单调递增区间;
(2)若x∈[${\frac{π}{6}$,$\frac{2π}{3}}$],求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某书店的销售刚刚上市的某知名品牌的高三数学单元卷,按事先限定的价格进行5天试销,每种单价试销1天,得到如表数据:
单价x(元)1819202122
销量y(册)6150504845
(1)求试销5天的销售量的方差和y对x的回归直线方程;
(2)预计今后的销售中,销售量与单价服从(1)中的回归方程,已知每册单元卷的成本是14元,为了获得最大利润,该单元卷的单价应定为多少元?
(附:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-x)({y}_{i}-y)}{\sum_{i=1}^{n}({x}_{i}-x)}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}\overline{x}$))

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若函数f(x)=x2+a|x-$\frac{1}{2}$|在[0,+∞)上单调递增,则实数a的取值范围是(  )
A.[-2,0]B.[-4,0]C.[-1,0]D.[-$\frac{1}{2}$,0]

查看答案和解析>>

同步练习册答案