精英家教网 > 高中数学 > 题目详情
14.如图,三棱锥P-ABC的棱长都相等,D是棱AB的中点,则直线PD与直线BC所成角的余弦值为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{3}}{6}$D.$\frac{\sqrt{6}}{4}$

分析 取AC的中点E,DE∥BC,即构造出直线PD与直线BC所成角为∠PDE.

解答 解:取AC的中点E,连接DE,PE,
∴DE∥BC,则直线PD与直线BC所成角为∠PDE.
∵三棱锥P-ABC的棱长都相等,设:AP=PB=PC=a,D是棱AB的中点,
∴PD⊥AB,PE⊥AC,PD=PE,
可得:△APE≌△ADP,且是直角三角形,
∴PD=PE=$\sqrt{P{A}^{2}-A{E}^{2}}=\frac{\sqrt{3}}{2}a$.
利用余弦定理:
∴cos∠PDE=$\frac{P{D}^{2}+D{E}^{2}-P{E}^{2}}{2PD•DE}$=$\frac{(\frac{\sqrt{3}}{2}a)^{2}+(\frac{1}{2}a)^{2}-(\frac{\sqrt{3}}{2}a)^{2}}{2×\frac{\sqrt{3}}{2}a×\frac{1}{2}a}=\frac{\sqrt{3}}{6}$
故选:C.

点评 本题考查异面直线所成角的大小以及利用余弦定理来求余弦值,学会利用已知条件,作出辅助线,构造出异面直线所成角,注重空间思维能力的培养.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.在△ABC中,角A,B,C所对的边分别为a,b,c,已知a=8,B=60°,C=75°,则b=4$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知f(x)在R上是奇函数,且满足f(x+2)=-f(x),当x∈(0,2)时,f(x)=log2x,则f($\frac{15}{2}$)=(  )
A.-1B.$log_2{\frac{15}{2}}$C.1D.$-log_2{\frac{15}{2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数y=$\frac{2-{2}^{x}}{{2}^{x}-1}$的值域为(  )
A.(-∞,-2]∪[-1,+∞)B.(-∞,-2)∪(-1,+∞)C.{y|y≠-1,y∈R}D.{y|y≠-2,y∈R}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.(1)已知点P(3,1)在矩阵A=$[\begin{array}{l}{a}&{2}\\{b}&{-1}\end{array}]$ 变换下得到点P′(5,-1).试求矩阵A和它的逆矩阵A-1
(2)在平面直角坐标系xOy中,圆C的参数方程为$\left\{\begin{array}{l}x=m+2cosα\\ y=2sinα\end{array}$(α为参数,m为常数).以原点O为极点,以x轴的非负半轴为极轴的极坐标系中,直线l的极坐标方程为ρcos(θ-$\frac{π}{4}$)=$\sqrt{2}$.若直线l与圆C有两个公共点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.过抛物线y2=4x的焦点F的直线分别交抛物线于A,B两点,交直线x=-1于点P.若$\overrightarrow{PA}$=λ$\overrightarrow{AF}$,$\overrightarrow{PB}$=μ$\overrightarrow{BF}$(λ,μ∈R),则λ+μ=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD是直角梯形,AB∥DC,AB⊥AD,AB=3,CD=2,PD=AD=5.
(1)在PD上确定一点E,使得PB∥平面ACE,并求$\frac{PE}{ED}$的值;
(2)在(1)条件下,求平面PAB与平面ACE所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.三棱锥被平行于底面ABC的平面所截得的几何体如图所示,截面为A1B1C1,∠BAC=90°,A1A⊥平面ABC,A1A=$\sqrt{3}$,AB=$\sqrt{2}$,AC=2,A1C1=1,$\frac{BD}{DC}$=$\frac{1}{2}$.
(Ⅰ)证明:BC⊥平面A1AD
(Ⅱ)求二面角A-CC1-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在△ABC中,a2=c2-b2-$\sqrt{3}$ab,则角C的度数为(  )
A.60°B.45°或135°C.150°D.30°

查看答案和解析>>

同步练习册答案