分析 (Ⅰ)以AB、AC、AA1分别为x轴、y轴、z轴建立空间直角坐标系,利用向量法能证明BC⊥平面A1AD.
(Ⅱ)BA⊥平面ACC1A1,取$\overrightarrow{m}$=$\overrightarrow{AB}$=($\sqrt{2}$,0,0)为平面ACC1A1的法向量,
解答 证明:(Ⅰ)以AB、AC、AA1分别为x轴、y轴、z轴建立空间直角坐标系,![]()
则A(0,0,0),B($\sqrt{2}$,0,0),C(0,2,0),A1(0,0,$\sqrt{3}$),${C}_{1}(0,1,\sqrt{3})$,
∵BD:DC=1:2,$\overrightarrow{BD}$=$\frac{1}{3}$$\overrightarrow{BC}$.
∴D($\frac{2\sqrt{2}}{3}$,$\frac{2}{3}$,0),$\overrightarrow{AD}$=($\frac{2\sqrt{2}}{3}$,$\frac{2}{3}$,0),$\overrightarrow{BC}$=(-$\sqrt{2},2,0$),$\overrightarrow{A{A}_{1}}$=(0,0,$\sqrt{3}$).
∵$\overrightarrow{BC}$•$\overrightarrow{A{A}_{1}}$=0,$\overrightarrow{BC}$•$\overrightarrow{AD}$=0,∴BC⊥AA1,BC⊥AD,又A1A∩AD=A,
BC⊥平面A1AD ….(5分)
解:(Ⅱ)∵BA平面ACC1A1,取m=$\overrightarrow{AB}$=($\sqrt{2}$,0,0)为平面ACC1A1的法向量,
设平面BCC1B1的法向量为$\overrightarrow{n}$=(l,m,n),则$\overrightarrow{BC}•\overrightarrow{n}$=0,$\overrightarrow{C{C}_{1}}$•$\overrightarrow{n}$=0.
∴$\left\{\begin{array}{l}{-\sqrt{2}l+2m=0}\\{-m+\sqrt{3}n=0}\end{array}\right.$,l=$\sqrt{2}m$,n=$\frac{\sqrt{3}}{3}m$,取m=1,得$\overrightarrow{n}$=($\sqrt{2}$,1,$\frac{\sqrt{3}}{3}$),
∴cos<$\overrightarrow{m},\overrightarrow{n}$>=$\frac{\sqrt{2}•\sqrt{2}}{\sqrt{2}•\sqrt{\frac{10}{3}}}$=$\frac{\sqrt{15}}{5}$.
∴二面角A-CC1-B的余弦值为$\frac{\sqrt{15}}{5}$.…(12分)
点评 本题考查线面垂直的证明,考查二面角的余弦值的求法,是中档题,注意向量法的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{3}}{3}$ | C. | $\frac{\sqrt{3}}{6}$ | D. | $\frac{\sqrt{6}}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 单价x(元) | 18 | 19 | 20 | 21 | 22 |
| 销量y(册) | 61 | 50 | 50 | 48 | 45 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=±$\frac{3}{2}$x | B. | y=±$\frac{\sqrt{3}}{2}$x | C. | y=±$\frac{\sqrt{3}}{3}$x | D. | y=±$\sqrt{3}$x |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com