精英家教网 > 高中数学 > 题目详情
3.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率为2,焦点与椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1的焦点相同,则双曲线的渐近线方程为(  )
A.y=±$\frac{3}{2}$xB.y=±$\frac{\sqrt{3}}{2}$xC.y=±$\frac{\sqrt{3}}{3}$xD.y=±$\sqrt{3}$x

分析 根据椭圆的标准方程求出c,利用双曲线的离心率建立方程求出a,b,即可求出双曲线的渐近线方程.

解答 解:∵椭圆的标准方程为$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1,
∴椭圆中的a1=5,b1=4,则c=3,
∵双曲线的焦点与椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1的焦点相同,
∴双曲线中c=3,
∵双曲线 $\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1=1(a>0,b>0)的离心率为2,
∴e=$\frac{3}{a}$=2,则a=$\frac{3}{2}$.
在双曲线中b=$\sqrt{9-\frac{9}{4}}$=$\frac{3\sqrt{3}}{2}$,
则双曲线的渐近线方程为y=±$\frac{b}{a}$x=±$\sqrt{3}$x,
故选:D.

点评 本题主要考查双曲线渐近线的求解,根据椭圆和双曲线的关系建立方程求出a,b,c是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.三棱锥被平行于底面ABC的平面所截得的几何体如图所示,截面为A1B1C1,∠BAC=90°,A1A⊥平面ABC,A1A=$\sqrt{3}$,AB=$\sqrt{2}$,AC=2,A1C1=1,$\frac{BD}{DC}$=$\frac{1}{2}$.
(Ⅰ)证明:BC⊥平面A1AD
(Ⅱ)求二面角A-CC1-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在△ABC中,a2=c2-b2-$\sqrt{3}$ab,则角C的度数为(  )
A.60°B.45°或135°C.150°D.30°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.执行如图的程序框图,输出的S为(  )
A.25B.30C.55D.91

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=4sin(ωx+φ)(ω>0,-π<φ<π)的图象各点的纵坐标不变,横坐标变为原来的2倍,得到g(x)=4sinx的图象.
(1)求函数f(x)的递增区间;
(2)求函数f(x)在[-$\frac{π}{12}$,$\frac{2π}{5}$]上的值域;
(3)求证:对任意λ>0,都存在μ>0,使f(x)+x-4<0对x∈(-∞,λμ)恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.$cos(-\frac{11π}{6})+sin\frac{11π}{3}$的值等于0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知A={x|0<x<2},B={x|y=ln(1-x)},则A∪B等于(  )
A.(-∞,1)B.(-∞,2)C.(0,2)D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.某实验室至少需要某种化学药品10kg,现在市场上出售的该药品有两种包装,一种是每袋3kg,价格为12元;另一种是每袋2kg,价格为10元.但由于保质期的限制,每一种包装购买的数量都不能超过5袋,则在满足需要的条件下,花费最少(  )
A.56B.42C.44D.54

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若函数f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$ax2+(a-1)x+1在区间(7,+∞)上为增函数,则实数a的取值范围是a≤8.

查看答案和解析>>

同步练习册答案