精英家教网 > 高中数学 > 题目详情
2.如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥CD,∠BCD=90°.
(1)求证:BC⊥平面PDC;
(2)求点A到平面PBC的距离.

分析 (1)证明PD⊥BC,BC⊥CD,利用直线与平面垂直的判定定理证明BC⊥平面PDC.
(2)解:连结AC,设点A到平面PBC的距离为h.通过VA-PBC=VP-ABC,转化求解即可.

解答 (1)证明:∵PD⊥平面ABCD,∴PD⊥BC…(2分)
又∵∠BCD=90°,∴BC⊥CD…(3分)
而  PD∩DC=D,PD?平面PDC,CD?平面PDC…(4分)
∴BC⊥平面PDC.…(6分)
(2)解:连结AC,设点A到平面PBC的距离为h.
由(1)有BC⊥平面PDC,
∴BC⊥PC…(7分)
在Rt△PDC中,有PD=DC=1∴$PC=\sqrt{2}$…(8分)
由VA-PBC=VP-ABC
有$\frac{1}{3}×{S_{△PBC}}•h=\frac{1}{3}×{S_{△ABC}}×PD$…(9分)
∴$\frac{1}{3}×\frac{1}{2}×PC×BC•h=\frac{1}{3}×\frac{1}{2}×AB×BC×PD$,
∴$\frac{1}{3}×\frac{1}{2}×\sqrt{2}×1×h=\frac{1}{3}×\frac{1}{2}×2×1×1$∴$h=\sqrt{2}$…(11分)
故所求距离为$\sqrt{2}$.…((12分))

点评 本题考查直线与平面垂直的判定定理的应用,几何体的体积的求法,考查转化思想以及空间想象能力计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.函数y=$\frac{2-{2}^{x}}{{2}^{x}-1}$的值域为(  )
A.(-∞,-2]∪[-1,+∞)B.(-∞,-2)∪(-1,+∞)C.{y|y≠-1,y∈R}D.{y|y≠-2,y∈R}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.三棱锥被平行于底面ABC的平面所截得的几何体如图所示,截面为A1B1C1,∠BAC=90°,A1A⊥平面ABC,A1A=$\sqrt{3}$,AB=$\sqrt{2}$,AC=2,A1C1=1,$\frac{BD}{DC}$=$\frac{1}{2}$.
(Ⅰ)证明:BC⊥平面A1AD
(Ⅱ)求二面角A-CC1-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图,矩形ABCD中,点A在x轴上,点B的坐标为(1,0).且点C与点D在函数f(x)=$\left\{\begin{array}{l}{x+1,x≥0}\\{-\frac{1}{2}x+1,x<0}\end{array}\right.$的图象上.若在矩形ABCD内随机取一点,则该点取自空白部分的概率等于(  )
A.$\frac{3}{4}$B.$\frac{1}{4}$C.$\frac{1}{6}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如图,圆O的割线PA过圆心O交圆于另一点B,弦CD交OB于点E,且∠P=∠OCE,PB=OA=2,则PE的长等于3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若△ABC的三内角A、B、C对应边a、b、c满足2a=b+c,则角A的取值范围为(0,$\frac{π}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在△ABC中,a2=c2-b2-$\sqrt{3}$ab,则角C的度数为(  )
A.60°B.45°或135°C.150°D.30°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.执行如图的程序框图,输出的S为(  )
A.25B.30C.55D.91

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.某实验室至少需要某种化学药品10kg,现在市场上出售的该药品有两种包装,一种是每袋3kg,价格为12元;另一种是每袋2kg,价格为10元.但由于保质期的限制,每一种包装购买的数量都不能超过5袋,则在满足需要的条件下,花费最少(  )
A.56B.42C.44D.54

查看答案和解析>>

同步练习册答案