9£®£¨1£©ÒÑÖªµãP£¨3£¬1£©ÔÚ¾ØÕóA=$[\begin{array}{l}{a}&{2}\\{b}&{-1}\end{array}]$ ±ä»»Ïµõ½µãP¡ä£¨5£¬-1£©£®ÊÔÇó¾ØÕóAºÍËüµÄÄæ¾ØÕóA-1£®
£¨2£©ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬Ô²CµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=m+2cos¦Á\\ y=2sin¦Á\end{array}$£¨¦ÁΪ²ÎÊý£¬mΪ³£Êý£©£®ÒÔÔ­µãOΪ¼«µã£¬ÒÔxÖáµÄ·Ç¸º°ëÖáΪ¼«ÖáµÄ¼«×ø±êϵÖУ¬Ö±ÏßlµÄ¼«×ø±ê·½³ÌΪ¦Ñcos£¨¦È-$\frac{¦Ð}{4}$£©=$\sqrt{2}$£®ÈôÖ±ÏßlÓëÔ²CÓÐÁ½¸ö¹«¹²µã£¬ÇóʵÊýmµÄȡֵ·¶Î§£®

·ÖÎö £¨1£©ÒÀÌâÒâµÃ=$[\begin{array}{l}{a}&{2}\\{b}&{-1}\end{array}]$ $[\begin{array}{l}{3}\\{1}\end{array}]$=$[\begin{array}{l}{3a+2}\\{3b-1}\end{array}]$=$[\begin{array}{l}{5}\\{-1}\end{array}]$£¬¼´$\left\{\begin{array}{l}{3a+2=5}\\{3b-1=-1}\end{array}\right.$£¬½â³ö¼´¿ÉµÃ³öA£®det£¨A£©=$|\begin{array}{l}{1}&{2}\\{0}&{-1}\end{array}|$=-1£¬¼´¿ÉµÃ³öAµÄÄæ¾ØÕóA-1£®
£¨2£©Ô²CµÄÆÕͨ·½³ÌΪ£¨x-m£©2+y2=4£®Ö±ÏßlµÄ¼«×ø±ê·½³Ì»¯Îª¦Ñ £¨$\frac{\sqrt{2}}{2}$cos¦È+$\frac{\sqrt{2}}{2}$sin¦È£©=$\sqrt{2}$£¬ÀûÓû¥»¯¹«Ê½¿ÉµÃ£ºÖ±½Ç×ø±ê·½³Ì£®ÀûÓõ㵽ֱÏߵľàÀ빫ʽ¼°ÆäÖ±ÏßÓëÔ²µÄÏཻµÄ³äÒªÌõ¼þ¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨1£©ÒÀÌâÒâµÃ=$[\begin{array}{l}{a}&{2}\\{b}&{-1}\end{array}]$ $[\begin{array}{l}{3}\\{1}\end{array}]$=$[\begin{array}{l}{3a+2}\\{3b-1}\end{array}]$=$[\begin{array}{l}{5}\\{-1}\end{array}]$£¬
¡à$\left\{\begin{array}{l}{3a+2=5}\\{3b-1=-1}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{a=1}\\{b=0}\end{array}\right.$£®
¡àA=$[\begin{array}{l}{1}&{2}\\{0}&{-1}\end{array}]$£®
¡ßdet£¨A£©=$|\begin{array}{l}{1}&{2}\\{0}&{-1}\end{array}|$=1¡Á£¨-1£©-0¡Á2=-1£¬
¡àAµÄÄæ¾ØÕóA-1=$[\begin{array}{l}{1}&{2}\\{0}&{-1}\end{array}]$£®
£¨2£©Ô²CµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=m+2cos¦Á\\ y=2sin¦Á\end{array}$£¨¦ÁΪ²ÎÊý£¬mΪ³£Êý£©£¬ÀûÓÃÆ½·½¹ØÏµ¿ÉµÃ£ºÔ²CµÄÆÕͨ·½³ÌΪ£¨x-m£©2+y2=4£®
Ö±ÏßlµÄ¼«×ø±ê·½³Ì»¯Îª¦Ñ £¨$\frac{\sqrt{2}}{2}$cos¦È+$\frac{\sqrt{2}}{2}$sin¦È£©=$\sqrt{2}$£¬
¼´$\frac{\sqrt{2}}{2}$x+$\frac{\sqrt{2}}{2}$y=$\sqrt{2}$£¬»¯¼òµÃx+y-2=0£®
¡ßÔ²CµÄÔ²ÐÄΪC£¨m£¬0£©£¬°ë¾¶Îª2£¬Ô²ÐÄCµ½Ö±ÏßlµÄ¾àÀëd=$\frac{|m-2|}{\sqrt{2}}$£¬
¡àd=$\frac{|m-2|}{\sqrt{2}}$£¼2£¬
½âµÃ2-2$\sqrt{2}$£¼m£¼2+2$\sqrt{2}$£®

µãÆÀ ±¾Ì⿼²éÁ˾ØÕó±ä»»¡¢ÐÐÁÐʽµÄ¼ÆËã¡¢¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì¡¢²ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì¡¢µãµ½Ö±ÏߵľàÀ빫ʽ¡¢Ö±ÏßÓëÔ²µÄλÖùØÏµ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖªzΪ¸´Êý£¬z+2iºÍ$\frac{z}{2-i}$¶¼ÊÇʵÊý£¬ÆäÖÐiΪÐéÊýµ¥Î»£®Çó¸´Êýz£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÒÑÖªµÈ±ÈÊýÁÐ{an}ÖУ¬a3£¬a15ÊÇ·½³Ìx2-6x+1=0µÄÁ½¸ù£¬Ôòa7a8a9a10a11µÈÓÚ£¨¡¡¡¡£©
A£®-1B£®1C£®-15D£®15

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÒÔÆ½ÃæÖ±½Ç×ø±êϵxOyµÄÔ­µãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«Öᣬ½¨Á¢¼«×ø±êϵ£¬Á½ÖÖ×ø±êϵÖÐÈ¡ÏàͬµÄ³¤¶Èµ¥Î»£¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=2+\frac{\sqrt{2}}{2}t}\\{y=1+\frac{\sqrt{2}}{2}t}\end{array}\right.$£¬Ô²CµÄ¼«×ø±ê·½³ÌΪ¦Ñ=4$\sqrt{2}$sin£¨¦È+$\frac{¦Ð}{4}$£©£®
£¨1£©ÇóÖ±ÏßlµÄÆÕͨ·½³ÌÓëÔ²CµÄÖ±½Ç×ø±êϵ£»
£¨2£©ÉèÇúÏßCÓëÖ±Ïßl½»ÓÚA¡¢BÁ½µã£¬ÈôPµãµÄÖ±½Ç×ø±êΪ£¨2£¬1£©£¬Çó||PA|-|PB||µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÈçͼËùʾµÄ¼¸ºÎÌåÖУ¬ËıßÐÎAA1B1BÊDZ߳¤Îª3µÄÕý·½ÐΣ¬CC1=2£¬CC1¡ÎAA1£¬Õâ¸ö¼¸ºÎÌåÊÇÀâÖùÂð£¿ÈôÊÇ£¬Ö¸³öÊǼ¸ÀâÖù£®Èô²»ÊÇÀâÖù£¬ÇëÄãÊÔÓÃÒ»¸öÆ½Ãæ½ØÈ¥Ò»²¿·Ö£¬Ê¹Ê£Óಿ·ÖÊÇÒ»¸öÀⳤΪ2µÄÈýÀâÖù£¬²¢Ö¸³ö½ØÈ¥µÄ¼¸ºÎÌåµÄÌØÕ÷£¬ÔÚÁ¢ÌåͼÖл­³ö½ØÃ森

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®Èçͼ£¬ÈýÀâ×¶P-ABCµÄÀⳤ¶¼ÏàµÈ£¬DÊÇÀâABµÄÖе㣬ÔòÖ±ÏßPDÓëÖ±ÏßBCËù³É½ÇµÄÓàÏÒֵΪ£¨¡¡¡¡£©
A£®$\frac{1}{2}$B£®$\frac{\sqrt{3}}{3}$C£®$\frac{\sqrt{3}}{6}$D£®$\frac{\sqrt{6}}{4}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®Èçͼ£¬ËÄÀâ×¶P-ABCDÖУ¬¡ÏABC=¡ÏBCD=90¡ã£¬AB=2£¬CD=CB=CP=1£®µãPÔÚµ×ÃæÉϵÄÉäӰΪÏß¶ÎBDµÄÖеãM£®
£¨¢ñ£©ÈôEΪÀâPBµÄÖе㣬ÇóÖ¤£ºCE¡ÎÆ½ÃæPAD£»
£¨¢ò£©Çó¶þÃæ½ÇA-PB-CµÄÆ½Ãæ½ÇµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®ÒÑ֪˫ÇúÏßCµÄÀëÐÄÂÊΪ$\frac{5}{2}$£¬×ó¡¢ÓÒ½¹µãΪF1£¬F2£¬µãAÔÚCÉÏ£¬Èô|F1A|=2|F2A|£¬Ôòcos¡ÏAF2F1=$\frac{13}{20}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®¸ø³öÏÂÁÐÃüÌ⣺
¢ÙÉèa£¬bΪ·ÇÁãʵÊý£¬Ôò¡°a£¼b¡±ÊÇ¡°$\frac{1}{a}£¾\frac{1}{b}$¡±µÄ³ä·Ö²»±ØÒªÌõ¼þ£»
¢ÚÔÚ¡÷ABCÖУ¬ÈôA£¾B£¬ÔòsinA£¾sinB£»
¢ÛÃüÌâ¡°?x¡ÊR£¬sinx£¼1¡±µÄ·ñ¶¨Îª¡°?x0¡ÊR£¬sinx0£¾1¡±£»
¢ÜÃüÌâ¡°Èôx¡Ý2ÇÒy¡Ý3£¬Ôòx+y¡Ý5¡±µÄÄæ·ñÃüÌâΪ¡°x+y£¼5£¬Ôòx£¼2ÇÒy£¼3¡±£®
ÆäÖÐÕæÃüÌâµÄ¸öÊýÊÇ£¨¡¡¡¡£©
A£®3B£®2C£®1D£®0

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸