精英家教网 > 高中数学 > 题目详情
17.以平面直角坐标系xOy的原点为极点,x轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,直线l的参数方程为$\left\{\begin{array}{l}{x=2+\frac{\sqrt{2}}{2}t}\\{y=1+\frac{\sqrt{2}}{2}t}\end{array}\right.$,圆C的极坐标方程为ρ=4$\sqrt{2}$sin(θ+$\frac{π}{4}$).
(1)求直线l的普通方程与圆C的直角坐标系;
(2)设曲线C与直线l交于A、B两点,若P点的直角坐标为(2,1),求||PA|-|PB||的值.

分析 (1)直线l的参数方程为$\left\{\begin{array}{l}{x=2+\frac{\sqrt{2}}{2}t}\\{y=1+\frac{\sqrt{2}}{2}t}\end{array}\right.$,消去t,求得普通方程:y=x-1,由ρ=4$\sqrt{2}$sin(θ+$\frac{π}{4}$)=4sinθ+4cosθ,可得:ρ2=4ρsinθ+4ρcosθ,即可求得x2+y2-4x-4y=0圆C的直角坐标系;
(2)将参数方程代入曲线圆C的直角坐标系,可求得t2-$\sqrt{2}$t-7=0,由韦达定理可知t1+t2=$\sqrt{2}$,t1•t2=-7<0,即t1•t2异号,可知||PA|-|PB||=|t1+t2|.

解答 解:(1)直线l的参数方程为$\left\{\begin{array}{l}{x=2+\frac{\sqrt{2}}{2}t}\\{y=1+\frac{\sqrt{2}}{2}t}\end{array}\right.$,消去t,求得普通方程:y=x-1,
直线l的普通方程为:y=x-1,(1分)
ρ=4$\sqrt{2}$sin(θ+$\frac{π}{4}$)=4sinθ+4cosθ,
∴ρ2=4ρsinθ+4ρcosθ,.
所以曲线C的直角坐标方程为x2+y2-4x-4y=0.(5分)
(2)点P(2,1)在直线l上,且在圆C内,把$\left\{\begin{array}{l}{x=2+\frac{\sqrt{2}}{2}t}\\{y=1+\frac{\sqrt{2}}{2}t}\end{array}\right.$,代入x2+y2-4x-4y=0,得:t2-$\sqrt{2}$t-7=0,
设两个实根为t1,t2,则t1+t2=$\sqrt{2}$,t1•t2=-7<0,即t1•t2异号.
∴||PA|-|PB||=||t1|-|t2||=|t1+t2|=$\sqrt{2}$.(10分)

点评 本题考查了参数方程化普通方程,考查了极坐标方程化直角坐标方程,一元二次方程根与系数的关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.若f(a+b)=f(a)•f(b)(a,b∈N*),且f(1)=2,则$\frac{f(2)}{f(1)}$+$\frac{f(4)}{f(3)}$+…+$\frac{f(2012)}{f(2011)}$=2012.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列各函数中,最小值为2的是(  )
A.y=x+$\frac{1}{x}$B.y=sinx+$\frac{1}{sinx}$,x∈(0,$\frac{π}{2}$)
C.y=$\frac{x^2+3}{\sqrt{x^2+2}}$D.y=$\sqrt{x-1}$+$\frac{1}{{\sqrt{x-1}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知f(x)在R上是奇函数,且满足f(x+2)=-f(x),当x∈(0,2)时,f(x)=log2x,则f($\frac{15}{2}$)=(  )
A.-1B.$log_2{\frac{15}{2}}$C.1D.$-log_2{\frac{15}{2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设全集U=R,集合A={x|-1<x<4},B={y|y=x+1,x∈A},试求A∪B,A∩B,(∁UA)∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数y=$\frac{2-{2}^{x}}{{2}^{x}-1}$的值域为(  )
A.(-∞,-2]∪[-1,+∞)B.(-∞,-2)∪(-1,+∞)C.{y|y≠-1,y∈R}D.{y|y≠-2,y∈R}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.(1)已知点P(3,1)在矩阵A=$[\begin{array}{l}{a}&{2}\\{b}&{-1}\end{array}]$ 变换下得到点P′(5,-1).试求矩阵A和它的逆矩阵A-1
(2)在平面直角坐标系xOy中,圆C的参数方程为$\left\{\begin{array}{l}x=m+2cosα\\ y=2sinα\end{array}$(α为参数,m为常数).以原点O为极点,以x轴的非负半轴为极轴的极坐标系中,直线l的极坐标方程为ρcos(θ-$\frac{π}{4}$)=$\sqrt{2}$.若直线l与圆C有两个公共点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD是直角梯形,AB∥DC,AB⊥AD,AB=3,CD=2,PD=AD=5.
(1)在PD上确定一点E,使得PB∥平面ACE,并求$\frac{PE}{ED}$的值;
(2)在(1)条件下,求平面PAB与平面ACE所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如图,圆O的割线PA过圆心O交圆于另一点B,弦CD交OB于点E,且∠P=∠OCE,PB=OA=2,则PE的长等于3.

查看答案和解析>>

同步练习册答案