分析 (1)直线l的参数方程为$\left\{\begin{array}{l}{x=2+\frac{\sqrt{2}}{2}t}\\{y=1+\frac{\sqrt{2}}{2}t}\end{array}\right.$,消去t,求得普通方程:y=x-1,由ρ=4$\sqrt{2}$sin(θ+$\frac{π}{4}$)=4sinθ+4cosθ,可得:ρ2=4ρsinθ+4ρcosθ,即可求得x2+y2-4x-4y=0圆C的直角坐标系;
(2)将参数方程代入曲线圆C的直角坐标系,可求得t2-$\sqrt{2}$t-7=0,由韦达定理可知t1+t2=$\sqrt{2}$,t1•t2=-7<0,即t1•t2异号,可知||PA|-|PB||=|t1+t2|.
解答 解:(1)直线l的参数方程为$\left\{\begin{array}{l}{x=2+\frac{\sqrt{2}}{2}t}\\{y=1+\frac{\sqrt{2}}{2}t}\end{array}\right.$,消去t,求得普通方程:y=x-1,
直线l的普通方程为:y=x-1,(1分)
ρ=4$\sqrt{2}$sin(θ+$\frac{π}{4}$)=4sinθ+4cosθ,
∴ρ2=4ρsinθ+4ρcosθ,.
所以曲线C的直角坐标方程为x2+y2-4x-4y=0.(5分)
(2)点P(2,1)在直线l上,且在圆C内,把$\left\{\begin{array}{l}{x=2+\frac{\sqrt{2}}{2}t}\\{y=1+\frac{\sqrt{2}}{2}t}\end{array}\right.$,代入x2+y2-4x-4y=0,得:t2-$\sqrt{2}$t-7=0,
设两个实根为t1,t2,则t1+t2=$\sqrt{2}$,t1•t2=-7<0,即t1•t2异号.
∴||PA|-|PB||=||t1|-|t2||=|t1+t2|=$\sqrt{2}$.(10分)
点评 本题考查了参数方程化普通方程,考查了极坐标方程化直角坐标方程,一元二次方程根与系数的关系,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=x+$\frac{1}{x}$ | B. | y=sinx+$\frac{1}{sinx}$,x∈(0,$\frac{π}{2}$) | ||
| C. | y=$\frac{x^2+3}{\sqrt{x^2+2}}$ | D. | y=$\sqrt{x-1}$+$\frac{1}{{\sqrt{x-1}}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | $log_2{\frac{15}{2}}$ | C. | 1 | D. | $-log_2{\frac{15}{2}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-2]∪[-1,+∞) | B. | (-∞,-2)∪(-1,+∞) | C. | {y|y≠-1,y∈R} | D. | {y|y≠-2,y∈R} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com