精英家教网 > 高中数学 > 题目详情
集合A={x|x2-3x+2=0},B={x|x2-3x+k=0},若A∪B=A,则实数k的取值构成的集合是
 
分析:首先求出集合A,再由A∪B=A,可得B⊆A,则B=∅,B={1},B={2},B={1,2};分四种情况讨论可得k的取值,进而可得答案.
解答:解:根据题意,分析可得:A={x|x2-3x+2=0}═{1,2},
若A∪B=A,则B⊆A,则B=∅,B={1},B={2},B={1,2};
①若B=∅,则k>
9
4

②若B={1}或B={2},则x2-3x+k=0有两相等的实根,k=
9
4
,验证可得不符合,
③若B={1,2},即A=B,则k=2;
综上可得,k=2或k>
9
4

故答案为{k|k>
9
4
,或k=2}.
点评:本题考查集合间的关系,难点在于B的分类讨论,实际要考虑A的全部子集的情况,注意不重不漏.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

1、若集合A={x|x2-x+1≥0},B={x|x2-5x+4≤0},则A∩B=
{x|1≤x≤4}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2-3x+2=0},B={x|x2-ax+3a-5=0}.若A∩B=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2-3x+2=0},B={x|x2-mx+m-1=0},若B⊆A,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2=4},B={x|ax=1},若B⊆A,则实数a的取值集合为
{0,-2,2}
{0,-2,2}

查看答案和解析>>

科目:高中数学 来源: 题型:

集合A={x|x2+ax+1=0,x∈R},B={1,2},且A=B,求a的取值范围.

查看答案和解析>>

同步练习册答案