精英家教网 > 高中数学 > 题目详情
已知椭圆的中心在坐标原点,右准线为,离心率为.若直线与椭圆交于不同的两点,以线段为直径作圆.
(1)求椭圆的标准方程;
(2)若圆轴相切,求圆被直线截得的线段长.
(1);(2).

试题分析:(1)先根据题中的条件确定的值,然后利用求出的值,从而确定椭圆的方程;(2)先确定点的坐标,求出圆的方程,然后利用点(圆心)到直线的距离求出弦心距,最后利用勾股定理求出直线截圆所得的弦长.
试题解析:(1)设椭圆的方程为,由题意知,解得
,故椭圆的标准方程为             5分
(2)由题意可知,点为线段的中点,且位于轴正半轴,
又圆轴相切,故点的坐标为
不妨设点位于第一象限,因为,所以,               7分
代入椭圆的方程,可得,因为,解得,               10分
所以圆的圆心为,半径为,其方程为            12分
因为圆心到直线的距离              14分
故圆被直线截得的线段长为             16分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆的左右焦点分别为,且经过点,为椭圆上的动点,以为圆心,为半径作圆.
(1)求椭圆的方程;
(2)若圆轴有两个交点,求点横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:的四个顶点恰好是一边长为2,一内角为的菱形的四个顶点.
(I)求椭圆C的方程;
(II)若直线y =kx交椭圆C于A,B两点,在直线l:x+y-3=0上存在点P,使得 ΔPAB为等边三角形,求k的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知两点A(–2,0),B(0,2),点P是椭圆=1上任意一点,则点P到直线AB距离的最大值是______________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知圆,圆,动圆与圆外切并且与圆内切,圆心的轨迹为曲线
(Ⅰ)求的方程;
(Ⅱ)是与圆,圆都相切的一条直线,与曲线交于两点,当圆的半径最长是,求

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知为椭圆的两个焦点,P为椭圆上,则此椭圆离心率的取值范围是                                               (    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知分别为椭圆的两个焦点,点为其短轴的一个端点,若为等边三角形,则该椭圆的离心率为(    )
A.  B. C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

分别是椭圆的左、右焦点,点P在椭圆上,若△为直角三角形,则△的面积等于__   __.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在矩形中,分别为四边的中点,且都在坐标轴上,设,

(Ⅰ)求直线的交点的轨迹的方程;
(Ⅱ)过圆上一点作圆的切线与轨迹交于两点,若,试求出的值.

查看答案和解析>>

同步练习册答案