精英家教网 > 高中数学 > 题目详情
在四棱锥P-OABC中,PO⊥底面OABC,∠OCB=60°,∠AOC=∠ABC=90°,且OP=OC=BC=2.
(1)若D是PC的中点,求证:BD平面AOP;
(2)求二面角P-AB-O的余弦值.
(1)证明:如图,建立空间直角坐标系O-xyz.
连接OB,易知△OBC为等边三角形,
P(0,0,2),C(0,2,0),B(
3
,1,0)

则D(0,1,1),
BD
=(-
3
,0,1)

又易知平面AOP的法向量
OC
=(0,2,0)

BD
OC
=-
3
×0+0×2+1×0=0

BD
OC

又∵BD?平面AOP,
∴BD平面AOP
(2)在△OAB中,OB=2,∠AOB=∠ABO=30°,则∠OAB=120°,
由正弦定理,得OA=
2
3
3
,即A(
2
3
3
,0,0)

AB
=(
3
3
,1,0)
PB
=(
3
,1,-2)

设平面PAB的法向量为
m
=(x,y,z)

m
AB
m
PB
m
AB
=
3
3
x+y=0
m
PB
=
3
x+y-2z=0

x=
3

则y=-1,z=1,
m
=(
3
,-1,1)

又平面OABC的法向量为
n
=
OP
=(0,0,2)

cos<
m
n
>=
|
m
n
|
|
m
||
n
|
=
2
5
×2
=
5
5

∴二面角P-AB-O的余弦值为
5
5

练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

如果直线l是平面α的斜线,那么在平面α内(  )
A.不存在与l平行的直线
B.不存在与l垂直的直线
C.与l垂直的直线只有一条
D.与l平行的直线有无穷多条

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥S-ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB,过A作AF⊥SB,垂足为F,点E,G分别是棱SA,SC的中点.求证:
(1)平面EFG平面ABC;
(2)BC⊥SA.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图为一组合体,其底面ABCD为正方形,PD⊥平面ABCD,ECPD,且PD=AD=2EC=2
(Ⅰ)求证:BE平面PDA;
(Ⅱ)求四棱锥B-CEPD的体积;
(Ⅲ)求该组合体的表面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,正方体ABCD-A1B1C1D1中,E、F、G、H分别是所在棱的三等分点,且BF=DE=C1G=C1H=
1
3
AB

(1)证明:直线EH与FG共面;
(2)若正方体的棱长为3,求几何体GHC1-EFC的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥E-ABCD中,底面ABCD是矩形,AB=2BC,P、Q分别为线段AB、CD的中点,EP⊥底面ABCD.
(1)求证:AQ平面CEP;
(2)求证:平面AEQ⊥平面DEP;
(3)若EP=AP=1,求三棱锥E-AQC的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图1,在Rt△ABC中,∠C=90°,BC=3,AC=6.D、E分别是AC、AB上的点,且DEBC,将△ADE沿DE折起到△A1DE的位置,使A1D⊥CD,如图2.
(1)求证:BC平面A1DE;
(2)求证:BC⊥平面A1DC;
(3)当D点在何处时,A1B的长度最小,并求出最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱柱ABCD-A1B1C1D1中,D1D⊥底面ABCD,底面ABCD是正方形,且AB=1,D1D=
2
,E、F、G分别A1B1、B1C1、BB1的中点.
(1)求直线D1B与平面ABCD所成角的大小.
(2)求证:AC平面EGF.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在三棱柱ABC-A1B1C1中,△ABC为等边三角形,侧棱AA1⊥平面ABC,AB=2,AA1=2
3
,D、E分别为AA1、BC1的中点.
(Ⅰ)求证:DE⊥平面BB1C1C;
(Ⅱ)求三棱锥C-BC1D的体积.

查看答案和解析>>

同步练习册答案