【题目】已知
.
(1)将
的单调区间和极值;
(2)若
有两个零点
,求
的取值范围,并证明
.
【答案】(1)
在区间
上单调递减,在区间
上单调递增;
有极小值
,无极大值;(2)
,证明见解析.
【解析】
(1)求得函数的导数
,求得函数的单调性,根据函数极值的概念,即可求解;
(2)由(1)和题设条件得到极小值
,令
,化简得到函数
,进而求得
,再由题目条件化简得
,
利用分析法,即可证得结论.
(1)由题意,函数
,则
,
令
,即
,可得
,解得
,
令
,即
,可得
,解得
,
所以函数
在区间
上单调递减,在区间
上单调递增,
所以当
时,函数
取得极小值,
极小值为
,无极大值.
(2)由(1)可知,若函数
有两零点,则极小值
,
所以
,可得
,即
,且极值点
,
又由
,
令
,则
,
,
,
令
,
,
在
上单调递增,所以![]()
所以
,所以
,
从而可得
在
上有一个零点,
所以当
时,
在区间
各有唯一零点
由题目条件可得
,两边同时取对数可得
,
,
两式相减可得
,即
,
要证
,
只需证
,即证
,即证
,
即证
即证
,
令
,则
,只需要证
,
令
,则
,可得
,
当
时
,所以
在
上单调递增,
所以当
时
,所以
在
上单调递增,
当
时
,即
在
上恒成立.
原命题得证.
科目:高中数学 来源: 题型:
【题目】如图,CM,CN为某公园景观湖胖的两条木栈道,∠MCN=120°,现拟在两条木栈道的A,B处设置观景台,记BC=a,AC=b,AB=c(单位:百米)
![]()
(1)若a,b,c成等差数列,且公差为4,求b的值;
(2)已知AB=12,记∠ABC=θ,试用θ表示观景路线A-C-B的长,并求观景路线A-C-B长的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
年上半年,随着新冠肺炎疫情在全球蔓延,全球超过
个国家或地区宣布进人紧急状态,部分国家或地区直接宣布“封国”或“封城”,随着国外部分活动进入停摆,全球经济缺乏活力,一些企业开始倒闭,下表为
年第一季度企业成立年限与倒闭分布情况统计表:
企业成立年份 | 2019 | 2018 | 2017 | 2016 | 2015 |
企业成立年限 | 1 | 2 | 3 | 4 | 5 |
倒闭企业数量(万家) | 5.23 | 4.70 | 3.72 | 3.12 | 2.42 |
倒闭企业所占比例 | 21.8% | 19.6% | 15.5% | 13.0% | 10.1% |
根据上表,给出两种回归模型:
模型①:建立曲线型回归模型
,求得回归方程为
;
模型②:建立线性回归模型
.
(1)根据所给的统计量,求模型②中
关于
的回归方程;
(2)根据下列表格中的数据,比较两种模型的相关指数
,并选择拟合精度更高、更可靠的模型,预测
年成立的企业中倒闭企业所占比例(结果保留整数).
回归模型 | 模型① | 模型② |
回归方程 |
|
|
|
|
参考公式:
,
;
.
参考数据:
,
,
,
,
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,斜率为
的直线交抛物线
于
两点,已知点
的横坐标比点
的横坐标大4,直线
交线段
于点
,交抛物线于点
.
![]()
(1)若点
的横坐标等于0,求
的值;
(2)求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正三棱柱ABC﹣A1B1C1的底面边长为
,且该三棱柱外接球的表面积为14π,若P为底面A1B1C1的中心,则PA与平面ABC所成角的大小为( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)
|2x﹣3|,g(x)
|2x+a+b|.
(1)解不等式f(x)
x2;
(2)当a
0,b
0时,若F(x)
f(x)+g(x)的值域为[5,+∞),求证:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现有一种水上闯关游戏,共设有3个关口,如果在规定的时间内闯过了这3个关口,那么闯关成功,否则闯关失败,结束游戏.假定小张、小王、小李闯过任何一个关口的概率分别为
,且各关口能否顺利闯过相互独立.
(1)求小张、小王、小李分别闯关成功的概率;
(2)记小张、小王、小李三人中闯关成功的人数为X,求X的分布列及数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com