已知数列{an}满足递推关系式:an+2an-an+12=tn(t-1),(n∈N*),且a1=1,a2=t.(t为常数,且t>1)
(1)求a3;
(2)求证:{an}满足关系式an+2-2tan+1+tan=0,(n∈N*;
(3)求证:an+1>an≥1(n∈N*).
解:(1)由a
3a
1-a
22=t(t-1)和a
1=1,a
2=t
∴a
3=2t
2-t…(4分)
(2)由a
n+2a
n-a
n+12=t
n(t-1),(n∈N
*)
得a
n+1a
n-1-a
n2=t
n-1(t-1)(n≥2),
再由上两式相除得到:∴a
n+2a
n-a
n+12=ta
n+1a
n-1-ta
n2
∴a
n(a
n+2+ta
n)=a
n+1(a
n+1+ta
n-1)
∴
即
为常数列
∴
而a
3+ta
1=2t
2∴
.
即a
n+2-2ta
n+1+ta
n=0.…(9分)
(3)由t>1知:a
n+2a
n>a
n+12≥0
∴a
n+2a
n>0
故a
n+2与a
n同号
而a
1=1>0,a
2=t>0.
故a
n>0.
又
即
∴
∴a
n+1>a
n
∴a
n≥1
∴a
n+1>a
n≥1.…(14分)
分析:(1)由a
3a
1-a
22=t(t-1)和a
1=1,a
2=t,能求出a
3.
(2)由a
n+2a
n-a
n+12=t
n(t-1),(n∈N
*)得a
n+1a
n-1-a
n2=t
n-1(t-1)(n≥2),所以a
n+2a
n-a
n+12=ta
n+1a
n-1-ta
n2,
,由此能够证明a
n+2-2ta
n+1+ta
n=0.
(3)由t>1知:a
n+2a
n>a
n+12≥0,所以a
n+2a
n>0,故a
n+2与a
n同号,由此能够证明a
n+1>a
n≥1.
点评:本题考查数列的性质和应用,解题时要认真审题,仔细解答,注意不等式性质的合理运用.