精英家教网 > 高中数学 > 题目详情
8.直线l在平面直角坐标系中的位置如图,已知l∥x轴,则直线l的方程不可以用下面哪种形式写出(  )
A.点斜式B.斜截式C.截距式D.一般式

分析 l∥x轴,可得直线l的方程为y=1.即可判断出结论.

解答 解:∵l∥x轴,则直线l的方程为y=1.
则直线l的方程不可以用下面截距式写出.
故选:C.

点评 本题考查了直线的方程形式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知f(x)是定义域为(-1,1),且满足f(x+y)=f(x)+f(y),且f(x)在(-1,1)上是减函数.
(1)若f(-$\frac{1}{4}$)=-$\frac{1}{4}$,求f($\frac{1}{2}$);
(2)解不等式f(1-x)+f(1-x2)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.直线y=x-1的斜率等于(  )
A.-1B.1C.$\frac{π}{4}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知变量x,y满足$\left\{\begin{array}{l}{x-4y+3≤0}\\{x+y-4≤0}\\{x≥1}\end{array}\right.$,则z=x-y的取值范围是(  )
A.[-2,-1]B.[-2,0]C.[0,$\frac{6}{5}$]D.[-2,$\frac{6}{5}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准x(吨).一位居民的月用水量不超过x的部分按平价收费,超出x的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5)分成9组,制成了如图所示的频率分布直方图.
(I)求直方图中a的值;
( II)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;
( III)若该市政府希望使85%的居民每月的用水量不超过标准x(吨),则每位居民的月均用水量x在哪一组?,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在平行四边形ABCD中,M,N分别是线段AB,BC的中点,且DM=1,DN=2,∠MDN=$\frac{π}{3}$;
(I)试用向量$\overrightarrow{AB}$,$\overrightarrow{AD}$表示向量$\overrightarrow{DM}$,$\overrightarrow{DN}$;
(II)求|${\overrightarrow{AB}}$|,|${\overrightarrow{AD}}$|;
(III)设O为△ADM的重心(三角形三条中线的交点),若$\overrightarrow{AO}$=x$\overrightarrow{AD}$+y$\overrightarrow{AM}$,求x,y的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=ax2+bx-lnx(a,b∈R).
(1)设b=2-a,求f(x)的零点的个数;
(2)设a>0,且对于任意x>0,f'(1)=0,试问lna+2b是否一定为负数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)的定义域为R.?a,b∈R,若此函数同时满足:
①当a+b=0时,有f(a)+f(b)=0;
②当a+b>0时,有f(a)+f(b)>0,
则称函数f(x)为Ω函数.
在下列函数中:
①y=x+sinx;
②y=3x-($\frac{1}{3}$)x
③y=$\left\{\begin{array}{l}{0,x=0}\\{-\frac{1}{x},x≠0}\end{array}\right.$
是Ω函数的为①②.(填出所有符合要求的函数序号)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知三棱锥P-ABC的所有棱长都相等,现沿PA,PB,PC三条侧棱剪开,将其表面展开成一个平面图形,若这个平面图形外接圆的半径为$\sqrt{6}$,则三棱锥P-ABC的体积为$\frac{9}{8}$.

查看答案和解析>>

同步练习册答案