精英家教网 > 高中数学 > 题目详情
3.设△AnBnCn的三边长分别是an,bn,cn,△AnBnCn的面积为Sn,n∈N*,若b1>c1,b1+c1=2a1,an+1=an,bn+1=$\frac{{{a_n}+{c_n}}}{2},{c_{n+1}}=\frac{{{a_n}+{b_n}}}{2}$,则(  )
A.{Sn}为递减数列B.{Sn}为递增数列
C.{S2n-1}为递增数列,{S2n}为递减数列D.{S2n-1}为递减数列,{S2n}为递增数列

分析 由an+1=an可知△AnBnCn的边BnCn为定值a1,由bn+1+cn+1-2a1=$\frac{1}{2}$(bn+cn-2an),b1+c1=2a1得bn+cn=2a1,则在△AnBnCn中边长BnCn=a1为定值,另两边AnCn、AnBn的长度之和bn+cn=2a1为定值,由此可知顶点An在以Bn、Cn为焦点的椭圆上,根据bn+1-cn+1=$\frac{1}{2}$(cn-bn),得bn-cn=$(-\frac{1}{2})^{n-1}({b}_{1}-{c}_{1})$,可知n→+∞时bn→cn,据此可判断△AnBnCn的边BnCn的高hn随着n的增大而增大,再由三角形面积公式可得到答案.

解答 解:b1=2a1-c1且b1>c1,∴2a1-c1>c1,∴a1>c1
∴b1-a1=2a1-c1-a1=a1-c1>0,∴b1>a1>c1
又b1-c1<a1,∴2a1-c1-c1<a1,∴2c1>a1,∴c1$>\frac{{a}_{1}}{2}$,
由题意,bn+1+cn+1=$\frac{{b}_{n}+{c}_{n}}{2}$+an,∴bn+1+cn+1-2an=$\frac{1}{2}$(bn+cn-2an),
∴bn+cn-2an=0,∴bn+cn=2an=2a1,∴bn+cn=2a1
又由题意,bn+1-cn+1=$\frac{{c}_{n}-{b}_{n}}{2}$,
∴bn+1-(2a1-bn+1)=$\frac{2{a}_{1}-{b}_{n}-{b}_{n}}{2}$=a1-bn,bn+1-a1=$\frac{1}{2}$(a1-bn)=$(-\frac{1}{2})^{n-1}$(b1-a1).
∴bn=a1+(b1-a1)$(-\frac{1}{2})^{n-1}$,cn=2a1-bn=a1-(b1-a1)$(-\frac{1}{2})^{n-1}$,
${S}_{n}^{2}$=$\frac{3{a}_{1}}{2}$$(\frac{3{a}_{1}}{2}-{a}_{1})$$[\frac{3{a}_{1}}{2}-{a}_{1}-({b}_{1}-{a}_{1})(-\frac{1}{2})^{n-1}]$•$[\frac{3{a}_{1}}{2}-{a}_{1}+({b}_{1}-{a}_{1})(-\frac{1}{2})^{n-1}]$=$\frac{3}{4}{a}_{1}^{2}$$[\frac{{a}_{1}^{2}}{2}-(\frac{1}{4})^{n-1}({b}_{1}-{a}_{1})^{2}]$单调递增.
可得{Sn}单调递增.
故选:B.

点评 本题主要考查由数列递推式求数列通项、三角形面积海伦公式,综合考查学生分析解决问题的能力,有较高的思维抽象度,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.设函数f(x)是奇函数,且在(0,+∞)内是增函数,又f(-3)=0,则x•f(x)<0的解集是(  )
A.{x|-3<x<0或x>3}B.{x|x<-3或0<x<3}C.{x|x<-3或x>3}D.{x|-3<x<0或0<x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=cos(2x+ϕ)(ϕ>0且为常数),下列命题错误的是(  )
A.不论ϕ取何值,函数f(x)的周期都是π
B.存在常数ϕ,使得函数f(x)是偶函数
C.不论ϕ取何值,函数f(x)在区间[$π-\frac{ϕ}{2},\frac{3π}{2}-\frac{ϕ}{2}$]都是减函数
D.函数f(x)的图象,可由函数y=cos2x的图象向右平移ϕ个单位得到

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)满足f(a+b)=f(a)•f(b),f(1)=2,则$\frac{{{f^2}(1)+f(2)}}{f(1)}+$$\frac{{{f^2}(2)+f(4)}}{f(3)}+$$\frac{{{f^2}(3)+f(6)}}{f(5)}+$$\frac{{{f^2}(4)+f(8)}}{f(7)}$=(  )
A.4B.8C.12D.16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=log3(9x+1)-x.
(1)判断函数f(x)的奇偶性并证明;
(2)设函数g(x)=log3(a+2-$\frac{a+4}{{3}^{x}}$),若关于x的不等式f(x)≥g(x)对x∈[-1,1]恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知f(x)=|x+1|.
(1)求不等式f(x+2)+f(2x)≥4的解集;
(2)若|m|>1,|n|>1,求证:$\frac{f(mn)}{|m|}$>f($\frac{n}{m}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知随机变量X~N(0,σ2),若P(|X|<2)=a,则P(X>2)的值为(  )
A.$\frac{1-a}{2}$B.$\frac{a}{2}$C.1-aD.$\frac{1+a}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知F1(-3,0),F2(3,0),满足条件|PF1|-|PF2|=2m-1的动点P的轨迹是双曲线的一支.下列数据:①2;②-1;③4;④-3;⑤$\frac{1}{2}$,则m可以是(  )
A.①③B.①②C.①②⑤D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知抛物线C:y2=2px的焦点坐标为F(2,0),则p=4;若已知点A(6,3),且点M在抛物线C上,则|MA|+|MF|的最小值为8.

查看答案和解析>>

同步练习册答案