精英家教网 > 高中数学 > 题目详情
11.已知函数f(x)满足f(a+b)=f(a)•f(b),f(1)=2,则$\frac{{{f^2}(1)+f(2)}}{f(1)}+$$\frac{{{f^2}(2)+f(4)}}{f(3)}+$$\frac{{{f^2}(3)+f(6)}}{f(5)}+$$\frac{{{f^2}(4)+f(8)}}{f(7)}$=(  )
A.4B.8C.12D.16

分析 先将f(a+b)=f(a)•f(b)化简变形得到$\frac{f(n+1)}{f(n)}$=f(1),根据此等式即可求出所求.

解答 解:运用条件知:$\frac{f(n+1)}{f(n)}$=f(1)=2,
∴$\frac{{{f^2}(1)+f(2)}}{f(1)}+$$\frac{{{f^2}(2)+f(4)}}{f(3)}+$$\frac{{{f^2}(3)+f(6)}}{f(5)}+$$\frac{{{f^2}(4)+f(8)}}{f(7)}$=$\frac{2f(2)}{f(1)}$+$\frac{2f(4)}{f(3)}$+$\frac{2f(6)}{f(5)}$+$\frac{2f(8)}{f(7)}$=16
故选D.

点评 本题主要考查了抽象函数及其应用,同时考查了划归与转化的思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$ax2+x在区间($\frac{1}{2}$,3)上既有极大值又有极小值,则实数a的取值范围是(  )
A.(2,+∞)B.[2,+∞)C.(2,$\frac{5}{2}$)D.(2,$\frac{10}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在△ABC中,若cosBcosC-sinBsinC≥0,则这个三角形的形状一定不会是锐角三角形(填“锐角”,或“直角”,或“钝角”).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设函数f(x)在(m,n)上的导函数为g(x),x∈(m,n),若g(x)的导函数小于零恒成立,则称函数f(x)在(m,n)上为“凸函数”.已知当a≤2时,$f(x)=\frac{1}{6}{x^3}-\frac{1}{2}a{x^2}+x$,在x∈(-1,2)上为“凸函数”,则函数f(x)在(-1,2)上结论正确的是(  )
A.有极大值,没有极小值B.没有极大值,有极小值
C.既有极大值,也有极小值D.既无极大值,也没有极小值

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.与cos50°cos20°+sin50°sin20°相等的是(  )
A.cos30°B.sin30°C.cos70°D.sin70°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数f(x)对于任意实数x满足条件$f({x+2})=\frac{1}{f(x)}$,若f(1)=-5,则f(f(5))=$-\frac{1}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设△AnBnCn的三边长分别是an,bn,cn,△AnBnCn的面积为Sn,n∈N*,若b1>c1,b1+c1=2a1,an+1=an,bn+1=$\frac{{{a_n}+{c_n}}}{2},{c_{n+1}}=\frac{{{a_n}+{b_n}}}{2}$,则(  )
A.{Sn}为递减数列B.{Sn}为递增数列
C.{S2n-1}为递增数列,{S2n}为递减数列D.{S2n-1}为递减数列,{S2n}为递增数列

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,四棱锥P-ABCD中,底面ABCD为矩形,PB=PC=AB,PB⊥平面PDC,E为棱PC的中点,F为AB中点.
(1)求证:EF∥平面PAD;
(2)求证:平面PBC⊥平面ABCD;
(3)求二面角E-DB-A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知焦点在x轴的椭圆的离心率为0.5,焦距是2,则椭圆的标准方程是$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1.

查看答案和解析>>

同步练习册答案