| A. | 4 | B. | 8 | C. | 12 | D. | 16 |
分析 先将f(a+b)=f(a)•f(b)化简变形得到$\frac{f(n+1)}{f(n)}$=f(1),根据此等式即可求出所求.
解答 解:运用条件知:$\frac{f(n+1)}{f(n)}$=f(1)=2,
∴$\frac{{{f^2}(1)+f(2)}}{f(1)}+$$\frac{{{f^2}(2)+f(4)}}{f(3)}+$$\frac{{{f^2}(3)+f(6)}}{f(5)}+$$\frac{{{f^2}(4)+f(8)}}{f(7)}$=$\frac{2f(2)}{f(1)}$+$\frac{2f(4)}{f(3)}$+$\frac{2f(6)}{f(5)}$+$\frac{2f(8)}{f(7)}$=16
故选D.
点评 本题主要考查了抽象函数及其应用,同时考查了划归与转化的思想,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | (2,+∞) | B. | [2,+∞) | C. | (2,$\frac{5}{2}$) | D. | (2,$\frac{10}{3}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 有极大值,没有极小值 | B. | 没有极大值,有极小值 | ||
| C. | 既有极大值,也有极小值 | D. | 既无极大值,也没有极小值 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {Sn}为递减数列 | B. | {Sn}为递增数列 | ||
| C. | {S2n-1}为递增数列,{S2n}为递减数列 | D. | {S2n-1}为递减数列,{S2n}为递增数列 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com