精英家教网 > 高中数学 > 题目详情
1.已知函数f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$ax2+x在区间($\frac{1}{2}$,3)上既有极大值又有极小值,则实数a的取值范围是(  )
A.(2,+∞)B.[2,+∞)C.(2,$\frac{5}{2}$)D.(2,$\frac{10}{3}$)

分析 求导,由题意可知:f′(x)=0在(-2,2)内应有两个不同实数根.根据二次函数的性质,即可求得实数a的取值范围.

解答 解:函数f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$ax2+x,求导f′(x)=x2-ax+1,
由f(x)在($\frac{1}{2}$,3)上既有极大值又有极小值,则f′(x)=0在($\frac{1}{2}$,3)内应有两个不同实数根.
$\left\{\begin{array}{l}{f′(\frac{1}{2})>0}\\{f′(3)>0}\\{\frac{1}{2}<\frac{1}{a}<3}\\{f′(\frac{1}{a})<0}\end{array}\right.$,解得:2<a<$\frac{5}{2}$,
实数a的取值范围(2,$\frac{5}{2}$),
故选C.

点评 本题考查导数的综合应用,考查利用导数求函数的单调性及函数极值的判断,二次函数的性质,考查转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=ex-ax2-bx-1,其中a,b∈R,e=2.71828…为自然对数的底数.
(1)求函数f(x)在点(1,f(1))处的切线的斜率;
(2)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;
(3)若f(1)=0,函数f(x)在区间(0,1)内有零点,证明:e-2<a<1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知x>0,当$x+\frac{81}{x}$的值最小时x的值为9.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设函数f(x)的定义域为D,若存在非零实数l使得对于任意x∈M(M⊆D),有x+l∈D,且f(x+l)≥f(x),则称f(x)为M上的l高调函数.如果定义域是[-1,+∞)的函数f(x)=x2为[-1,+∞)上的m高调函数,那么实数m的取值范围是m≥2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知命题p:?a∈R,且a>0,a+$\frac{1}{a}$≥2,命题q:?x0∈R,sinx0+cosx0=$\sqrt{3}$,则下列判断正确的是(  )
A.p是假命题B.q是真命题C.(¬q)是真命题D.(¬p)∧q是真命题

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在复平面内,复数z=$\frac{i}{1+2i}$的共轭复数对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设函数f(x)是奇函数,且在(0,+∞)内是增函数,又f(-3)=0,则x•f(x)<0的解集是(  )
A.{x|-3<x<0或x>3}B.{x|x<-3或0<x<3}C.{x|x<-3或x>3}D.{x|-3<x<0或0<x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设f(x),g(x)是定义域为R的恒大于零的可导函数,且 f'(x)•g(x)-f(x)g'(x)<0,则当b<x<a时有(  )
A.f(x)•g(x)>f(a)•g(a)B.f(x)•g(a)>f(a)•g(x)C.f(x)•g(b)>f(b)•g(x)D.f(x)•g(x)>f(b)•g(b)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)满足f(a+b)=f(a)•f(b),f(1)=2,则$\frac{{{f^2}(1)+f(2)}}{f(1)}+$$\frac{{{f^2}(2)+f(4)}}{f(3)}+$$\frac{{{f^2}(3)+f(6)}}{f(5)}+$$\frac{{{f^2}(4)+f(8)}}{f(7)}$=(  )
A.4B.8C.12D.16

查看答案和解析>>

同步练习册答案