精英家教网 > 高中数学 > 题目详情
6.在复平面内,复数z=$\frac{i}{1+2i}$的共轭复数对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 直接利用复数代数形式的乘除运算化简复数z,求出z的共轭复数,然后求出在复平面内,复数z的共轭复数对应的点的坐标得答案.

解答 解:∵z=$\frac{i}{1+2i}$=$\frac{i(1-2i)}{(1+2i)(1-2i)}=\frac{2+i}{5}=\frac{2}{5}+\frac{1}{5}i$,
∴其共轭复数为$\frac{2}{5}-\frac{1}{5}i$,
在复平面内,复数z=$\frac{i}{1+2i}$的共轭复数对应的点的坐标为:($\frac{2}{5}$,$-\frac{1}{5}$),位于第四象限.
故选:D.

点评 本题考查了复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.函数f(x)满足对定义域内任意实数x,y都有f(x+y)=f(x)+f(y),则该函数可以是(  )
A.一次函数B.二次函数C.指数函数D.对数函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.为降低汽车尾气的排放量,某厂生产甲乙两种不同型号的节排器,分别从甲乙两种节排器中各自抽取100件进行性能质量评估检测,综合得分情况的频率分布直方图如图所示.

节排器等级及利润如表格表示,其中$\frac{1}{10}<a<\frac{1}{7}$
综合得分k的范围节排器等级节排器利润率
k≥85一级品a
75≤k<85二级品5a2
70≤k<75三级品a2
(1)若从这100件甲型号节排器按节排器等级分层抽样的方法抽取10件,再从这10件节排器中随机抽取3件,求至少有2件一级品的概率;
(2)视频率分布直方图中的频率为概率,用样本估计总体,则
①若从乙型号节排器中随机抽取3件,求二级品数ξ的分布列及数学期望E(ξ);
②从长期来看,骰子哪种型号的节排器平均利润较大?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知点M,N是抛物线y=4x2上不同的两点,F为抛物线的焦点,且满足$∠MFN=\frac{2π}{3}$,弦MN的中点P到直线l:$y=-\frac{1}{16}$的距离记为d,若|MN|2=λ•d2,则λ的最小值为(  )
A.3B.$\sqrt{3}$C.$1+\sqrt{3}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$ax2+x在区间($\frac{1}{2}$,3)上既有极大值又有极小值,则实数a的取值范围是(  )
A.(2,+∞)B.[2,+∞)C.(2,$\frac{5}{2}$)D.(2,$\frac{10}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=ex-mx2-2x
(1)若m=0,讨论f(x)的单调性;
(2)若x∈[0,+∞)时,f(x)>$\frac{e}{2}$-1恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若函数f(x)=$\frac{4x}{{x}^{2}+1}$在区间(m,2m+1)上是单调递增函数,则实数m的取值范围为(  )
A.(-1,0]B.(-1,0)C.[0,1]D.(0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知cos(α-$\frac{π}{4}$)=$\frac{\sqrt{2}}{4}$,则sin2α等于(  )
A.$\frac{\sqrt{2}}{4}$B.-$\frac{\sqrt{2}}{4}$C.$\frac{3}{4}$D.-$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数f(x)对于任意实数x满足条件$f({x+2})=\frac{1}{f(x)}$,若f(1)=-5,则f(f(5))=$-\frac{1}{5}$.

查看答案和解析>>

同步练习册答案