精英家教网 > 高中数学 > 题目详情

【题目】设f(x)=lg(10x+1)+ax是偶函数,g(x)= 是奇函数,那么a+b的值为(
A.1
B.﹣1
C.﹣
D.

【答案】D
【解析】解:∵f(x)=lg(10x+1)+ax是偶函数,

∴f(﹣x)=f(x)对任意的x都成立,

∴lg(10x+1)+ax=lg(10﹣x+1)﹣ax,

∴(2a+1)x=0,

∴2a+1=0,

∵g(x)= 是奇函数,

∴g(0)=1﹣b=0,

∴b=1,

∴a+b=

故选D.

【考点精析】利用函数奇偶性的性质对题目进行判断即可得到答案,需要熟知在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,一个正六角星薄片(其对称轴与水面垂直)匀速地升出水面,直到全部露出水面为止,记时刻t薄片露出水面部分的图形面积为S(t)(S(0)=0),则导函数y=S'(t)的图象大致为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设a∈R,函数f(x)=cosx(asinx﹣cosx)+cos2 ﹣x)满足f(﹣ )=f(0).
(1)求f(x)的单调递减区间;
(2)设锐角△ABC的内角A,B,C所对的边分别为a,b,c,且 = ,求f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是某班50名学生身高的频率分布直方图,那么身高在区间[150,170)内的学生约有人.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知x∈(1,5),则函数y= + 的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设不等式组 所表示的平面区域为Dn , 记Dn内的整点个数为an(n∈N*).(整点即横坐标和纵坐标均为整数的点)
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)记数列{an}的前n项和为Sn , 且 ,若对于一切的正整数n,总有Tn≤m,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知首项为1的正项数列{an}满足an+12+an2 ,n∈N* , Sn为数列{an}的前n项和.
(1)若a2= ,a3=x,a4=4,求x的取值范围;
(2)设数列{an}是公比为q的等比数列,若 <Sn+1<2Sn , n∈N* , 求q的取值范围;
(3)若a1 , a2 , …,ak(k≥3)成等差数列,且a1+a2+…+ak=120,求正整数k的最小值,以及k取最小值时相应数列a1 , a2 , …,ak

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和Sn , 且an= (n∈N*). (Ⅰ)若数列{an+t}是等比数列,求t的值;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)记bn= + ,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个盒子中装有4个编号依次为1、2、3、4的球,这4个球除号码外完全相同,先从盒子中随机取一个球,该球的编号为X,将球放回袋中,然后再从袋中随机取一个球,该球的编号为Y
(1)列出所有可能结果.
(2)求事件A=“取出球的号码之和小于4”的概率.
(3)求事件B=“编号X<Y”的概率.

查看答案和解析>>

同步练习册答案