精英家教网 > 高中数学 > 题目详情

已知集合

(I)当=3时,求

(Ⅱ)若,求实数的值.

 

【答案】

(I);(Ⅱ)m=8.

【解析】

试题分析:首先通过解不等式可得集合.

(I)=3时,通过解不等式又可得集合.由此可得.

(Ⅱ)令,作出该函数的图象如图所示:

结合图象可得满足的条件,由此可得的值.

试题解析:由得:.

(I)由得:,所以.              6分

(Ⅱ)令,作出该函数的图象如图所示:

由图可知,要使得,应使:.

由此可得.                                         12分

 

考点:1、集合的基本运算;2、解不等式;3、二次函数的图象.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合Sn={X|X=(x1,x2,…,xn),x1∈{0,1},i=1,2,…,n}(n≥2)对于A=(a1,a2,…an,),B=(b1,b2,…bn,)∈Sn,定义A与B的差为A-B=(|a1-b1|,|a2-b2|,…|an-bn|);
A与B之间的距离为d(A,B)=
i-1
 |a1-b1|

(Ⅰ)当n=5时,设A=(0,1,0,0,1),B=(1,1,1,0,0),求d(A,B);
(Ⅱ)证明:?A,B,C∈Sn,有A-B∈Sn,且d(A-C,B-C)=d(A,B);
(Ⅲ)证明:?A,B,C∈Sn,d(A,B),d(A,C),d(B,C)三个数中至少有一个是偶数.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•西城区二模)已知集合Sn={(x1,x2,…,xn)|x1,x2,…,xn是正整数1,2,3,…,n的一个排列}(n≥2),函数g(x)=
1, x>0
-1,  x<0.

对于(a1,a2,…an)∈Sn,定义:bi=g(ai-a1)+g(ai-a2)+…+g(ai-ai-1),i∈{2,3,…,n},b1=0,称bi为ai的满意指数.排列b1,b2,…,bn为排列a1,a2,…,an的生成列.
(Ⅰ)当n=6时,写出排列3,5,1,4,6,2的生成列;
(Ⅱ)证明:若a1,a2,…,an和a'1,a'2,…,a'n为Sn中两个不同排列,则它们的生成列也不同;
(Ⅲ)对于Sn中的排列a1,a2,…,an,进行如下操作:将排列a1,a2,…,an从左至右第一个满意指数为负数的项调至首项,其它各项顺序不变,得到一个新的排列.证明:新的排列的各项满意指数之和比原排列的各项满意指数之和至少增加2.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•石景山区二模)已知集合Sn={(x1,x2,…,xn)|x1,x2,…,xn是正整数1,2,3,…,n的一个排列}(n≥2),函数g(x)=
1, x>0
-1,  x<0.

对于(a1,a2,…an)∈Sn,定义:bi=g(ai-a1)+g(ai-a2)+…+g(ai-ai-1),i∈{2,3,…,n},b1=0,称bi为ai的满意指数.排列b1,b2,…,bn为排列a1,a2,…,an的生成列;排列a1,a2,…,an为排列b1,b2,…,bn的母列.
(Ⅰ)当n=6时,写出排列3,5,1,4,6,2的生成列及排列0,-1,2,-3,4,3的母列;
(Ⅱ)证明:若a1,a2,…,an和a′1,a′2,…,a′n为Sn中两个不同排列,则它们的生成列也不同;
(Ⅲ)对于Sn中的排列a1,a2,…,an,定义变换τ:将排列a1,a2,…,an从左至右第一个满意指数为负数的项调至首项,其它各项顺序不变,得到一个新的排列.证明:一定可以经过有限次变换τ将排列a1,a2,…,an变换为各项满意指数均为非负数的排列.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合

   (I)当=3时,求

   (Ⅱ)若,求实数的值.

查看答案和解析>>

同步练习册答案