精英家教网 > 高中数学 > 题目详情
2.四棱锥P-ABCD中,底面ABCD是平行四边形,点E是PD上的点,且PE=2DE,在PC上找一点F,使得BF∥平面ACE.

分析 连结BDACO点,连结OE,过B点作OE的平行线交PD于点G,过GGFCE,交PC于点F,连结BF,由此能求出存在点FPC中点时,使BF∥面AEC

解答 解:连结BDACO点,连结OE,过B点作OE的平行线交PD于点G
GGFCE,交PC于点F,连结BF
BGOE,BG?面AEC,OE?面AEC
BG∥面AEC
同理GF∥面AEC
BGGF=G
∴面BFG∥面AEC,BF?面BFG
BF∥面AEC
下面求一下点FPC上的具体位置.
BGOEOBD中点,
EGD中点.
又∵PEED=2:1,
GPE中点.
GFCE,∴FPC中点.
综上,存在点FPC中点时,使BF∥面AEC

点评 本题考查满足线面平行的点的位置的确定,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.(重点中学做)不等式$\frac{4}{x-1}$≤x-1的解集是(  )
A.(-∞,-1]∪(1,3]B.[-1,1)∪[3,+∞)C.(-∞,-1]∪[3,+∞)D.[-1,1)∪(1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知一个正方形的边长为6,现用直径为2的硬币投掷到此正方方形上,则硬币落下后与此正方形的边有公共点的概率为(  )
A.$\frac{4}{9}$B.$\frac{5}{9}$C.$\frac{1}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=loga(1+x),g(x)=loga(1-x)其中(a>0且a≠1),设h(x)=f(x)-g(x)
(Ⅰ)求函数h(x)的定义域,判断h(x)的奇偶性,并说明理由.
(Ⅱ)若f(3)=2,求使h(x)<0成立的x的集合.
(Ⅲ)若a>1,当$x∈[0,\frac{1}{2}]$时,h(x)∈[0,1],求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知g(x)=x3-x2-x-1,若对?x1,x2∈[0,2],都有m≤g(x1)-g(x2)成立,则m的最大值为-3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求函数y=$\sqrt{3}$cos2x-sinxcosx+3的最大值、最小值和周期.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.向量的坐标运算:设$\overrightarrow{a}$=(x1,y1),$\overrightarrow{b}$=(x2,y2),则$\overrightarrow{a}$±$\overrightarrow{b}$=(x1±x2,y1±y2),
λ$\overrightarrow{a}$=(λx1,λy1),若(x1,y1),B(x2,y2),则$\overrightarrow{A}$B=(x2-x1,y2-y1
1°$\overrightarrow{a}$•$\overrightarrow{b}$=x1x2+y1y2;$\stackrel{-2}{a}$=${{x}_{1}}^{2}+{{y}_{1}}^{2}$
2°$\overrightarrow{a}$⊥$\overrightarrow{b}$?x1x2+y1y2=0,$\overrightarrow{a}$∥$\overrightarrow{b}$?x1y2-x2y1=0
3°|$\overrightarrow{a}$|=$\sqrt{{{x}_{1}}^{2}+{{y}_{1}}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.求函数y=$\frac{4}{{x}^{2}}$在x=2处的导数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设a=$\sqrt{2}$+$\sqrt{3}$,M={x|x≤$\sqrt{10}$},给出下列关系:①a⊆M②M?{a}③{a}∈M④{∅}∈{a}⑤2a∉M,其中正确的关系式共有(  )
A.2个B.3个C.4个D.5个

查看答案和解析>>

同步练习册答案