精英家教网 > 高中数学 > 题目详情
2.在平面直角坐标系xOy中,已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0)的离心率为$\frac{\sqrt{6}}{3}$,且点($\frac{3}{2},\frac{1}{2}$)在椭圆C上.
(1)求椭圆C的方程;
(2)过点P(0,2)的直线l交椭圆C于A,B两点,求△AOB的面积最大时l的方程.

分析 (1)运用椭圆的离心率公式和点满足椭圆方程,以及a,b,c的关系,解方程可得a,b,进而得到椭圆方程;
(2)设过点P(0,2)的直线l的方程为x=my+2,代入椭圆方程,可得(1+3m2)y2+12my+9=0,运用韦达定理和弦长公式,再由点到直线的距离公式,求得三角形AOB的面积,结合基本不等式即可得到最大值,进而得到所求直线的方程.

解答 解:(1)由题意可得e=$\frac{c}{a}$=$\frac{\sqrt{6}}{3}$,又a2-b2=c2
点($\frac{3}{2},\frac{1}{2}$)在椭圆C上,可得$\frac{9}{4{a}^{2}}$+$\frac{1}{4{b}^{2}}$=1,
解方程可得a=$\sqrt{3}$,b=1,
即有椭圆的方程为$\frac{{x}^{2}}{3}$+y2=1;
(2)设过点P(0,2)的直线l的方程为x=my+2,
代入椭圆方程,可得(1+3m2)y2+12my+9=0,
判别式为144m2-36(1+3m2)>0,即有m>1或m<-1,
设A(x1,y1),B(x2,y2),则y1+y2=-$\frac{12m}{1+3{m}^{2}}$,y1y2=$\frac{9}{1+3{m}^{2}}$,
|AB|=$\sqrt{1+{m}^{2}}$•|y1-y2|=$\sqrt{1+{m}^{2}}$•$\sqrt{(-\frac{12m}{1+3{m}^{2}})^{2}-\frac{36}{1+3{m}^{2}}}$=6$\sqrt{1+{m}^{2}}$•$\sqrt{\frac{{m}^{2}-1}{(1+3{m}^{2})^{2}}}$,
由O到直线l的距离d=$\frac{2}{\sqrt{1+{m}^{2}}}$,
则△AOB的面积为S=$\frac{1}{2}$d•|AB|=6$\sqrt{\frac{{m}^{2}-1}{(1+3{m}^{2})^{2}}}$,
令t=m2-1,(t>0),即有S=6$\sqrt{\frac{t}{(3t+4)^{2}}}$=6$\sqrt{\frac{1}{9t+\frac{16}{t}+24}}$,
由9t+$\frac{16}{t}$≥2$\sqrt{9t•\frac{16}{t}}$=24,当且仅当t=$\frac{4}{3}$,即m=±$\frac{\sqrt{21}}{3}$,取得等号,
即有△AOB的面积最大时l的方程为x=±$\frac{\sqrt{21}}{3}$y+2.

点评 本题考查椭圆的方程的求法,注意运用椭圆的离心率公式,考查直线和椭圆的位置关系,注意运用韦达定理和弦长公式,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.过圆x2+y2=4外一点P(4,2)作圆的两条切线,切点为A,B,则△ABP的外接圆的方程是(x-2)2+(y-1)2=5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数y=f(x)是偶函数,当x≥0时,f(x)=x2-4x+3,则f(x)的单调增区间是[-2,0],[2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.方程logax=x+2(0<a<1)的解的个数(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.计算下列各式中S的值,能设计算法求解的是(  )
①S=$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{8}$+…+$\frac{1}{{2}^{100}}$
②S=$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{8}$+…+$\frac{1}{{2}^{100}}$+…
③S=$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{8}$+…+$\frac{1}{{2}^{n}}$(n≥1且n∈N*
A.①②B.①③C.②③D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.一条光线从点(-2,-3)射出,经y轴反射后经过圆(x+3)2+(y-2)2=1的圆心,则反射光线所在直线的斜率为(  )
A.-1B.1C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知p:不等式ax2+2ax+1>0的解集为R;q:0<a<1.则p是q必要(充分,必要,充要)条件.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知数列{an}满足a1=1,an=a2n-1-1(n>1),则a5=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知{$\overrightarrow{i}$,$\overrightarrow{j}$,$\overrightarrow{k}$}为空间的单位正交基底,且$\overrightarrow{a}$=$\overrightarrow{i}$+$\overrightarrow{j}$-2$\overrightarrow{k}$,$\overrightarrow{b}$=3$\overrightarrow{i}$+2$\overrightarrow{j}$+$\overrightarrow{k}$,若m$\overrightarrow{a}$+2$\overrightarrow{b}$与2$\overrightarrow{a}$-$\overrightarrow{b}$互相垂直,则实数m的值为(  )
A.$\frac{4}{9}$B.$\frac{16}{9}$C.$\frac{4}{3}$D.$\frac{5}{3}$

查看答案和解析>>

同步练习册答案