精英家教网 > 高中数学 > 题目详情
6.已知椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{{\sqrt{2}}}{2}$,且短轴长为2.
(1)求椭圆的方程;
(2)若直线l:y=x+$\sqrt{2}$与椭圆交于A,B两点,O为坐标原点,求△AOB的面积.

分析 (1)由b=1,$e=\frac{c}{a}=\frac{{\sqrt{2}}}{2}$及a2=b2+c2,即可求得a和c的值,求得椭圆方程;
(2)将直线方程代入椭圆方程,消去y,根据韦达定理求得x1+x2及x1•x2,根据弦长公式及点到直线的距离公式,代入三角形面积公式即可求得△AOB的面积.

解答 解:(1)短轴长2b=2,b=1,
$e=\frac{c}{a}=\frac{{\sqrt{2}}}{2}$…(2分)
又a2=b2+c2
所以$a=\sqrt{2},c=1$,
所以椭圆的方程为$\frac{x^2}{2}+{y^2}=1$…(5分)
(2)设直线l的方程为$y=x+\sqrt{2}$,A(x1,y1),B(x2,y2),
∴$\left\{\begin{array}{l}y=x+\sqrt{2}\\{x^2}+2{y^2}=2\end{array}\right.$,消去y得,$3{x^2}+4\sqrt{2}x+2=0$,
由韦达定理可知:$\left\{\begin{array}{l}{x_1}+{x_2}=\frac{{-4\sqrt{2}}}{3}\\{x_1}•{x_2}=\frac{2}{3}\end{array}\right.$,
由弦长公式可知:丨AB丨=$\sqrt{1+{k}^{2}}$•$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$
=$\sqrt{2}$•$\sqrt{(-\frac{4\sqrt{2}}{3})^{2}-4×\frac{2}{3}}$=$\frac{4}{3}$…(7分)
根据点到直线的距离公式:d=$\frac{丨-\sqrt{2}丨}{\sqrt{{1}^{2}+(-1)^{2}}}$=1,
S△AOB=$\frac{1}{2}$×d×丨AB丨=$\frac{1}{2}$×1×$\frac{4}{3}$=$\frac{2}{3}$,
∴${S_{△AOB}}=\frac{2}{3}$…(12分)

点评 本题考查椭圆的性质,考查直线与椭圆的位置关系、点到直线的距离公式及弦长公式,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.若a>b,则下列不等式正确的是(  )
A.a+c<b+cB.a-c>b-cC.ac2>bc2D.$\frac{a}{c}$>$\frac{b}{c}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数y=x3-3x2-9x有(  )
A.极大值 5,无极小值B.极小值-27,无极大值
C.极大值 5,极小值-27D.极大值5,极小值-11

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知数列{an}满足log2an+1=log2an+1(n∈N+),且a2+a4+a6=4,则a5+a7+a9的值是(  )
A.32B.$\frac{1}{2}$C.8D.-8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数f(x)=$\frac{1}{lgx}$+$\sqrt{2-x}$的定义域为{x|0<x≤2且x≠1}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知a>0,设函数f(x)=$\frac{1}{2}$x2+2ax,g(x)=3a2lnx.
(1)当a=e时,函数h(x)=f(x)-g(x)在[1,t]内无极值,求t的范围;
(2)若函数y=f(x)和y=g(x)的图象在某点处有相同的切线y=kx+b,试证明f(x)≥kx+b对于任意的正实数x都成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知f(2x)=16-x-1,当x<0时,不等式f(-x)•lg(2m-x+$\frac{1}{2}$)<0恒成立,则m的取值范围是(  )
A.(-∞,1]B.[-1,+∞)C.[1,+∞)D.[-1,1]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如图,在正方体ABCD-A′B′C′D′中,点P为线段AD′的中点,则异面直线CP与BA′所成角θ的值为$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数f(x)=x4-x2有(  )
A.极小值-$\frac{1}{4}$,极大值0B.极小值0,极大值-$\frac{1}{4}$
C.极小值$\frac{1}{4}$,极大值0D.极小值0,极大值$\frac{1}{4}$

查看答案和解析>>

同步练习册答案