精英家教网 > 高中数学 > 题目详情

对于函数①数学公式,②数学公式,③f(x)=cos(x+2)-cosx,
判断如下两个命题的真假:
命题甲:f(x)在区间(1,2)上是增函数;
命题乙:f(x)在区间(0,+∞)上恰有两个零点x1,x2,且x1x2<1.
能使命题甲、乙均为真的函数的序号是


  1. A.
  2. B.
  3. C.
    ①③
  4. D.
    ①②
D
分析:①函数可用导数求出在(1,2)上是增函数,②函数是|log2x|与-的和函数,且两者在区间(1,2)上均是增函数,知是增函数.③f(x)=0得cos(x+2)=cosx,在(0,+∞)上无数个零点.
解答:①f'(x)=4-,在区间(1,2)f'(x)>0,f(x)在区间(1,2)上是增函数.使甲为真.f(x)的最小值是-1<0当x=时取得.又f(1)=0,∴f(x)在区间(0,+∞)上恰有两个零点x1;x2=1. x1x2=x1<1,使乙为真.
②在区间(1,2),|log2x|=log2x,是增函数.-也是增函数,两者的和函数也是增函数.使甲为真.利用信息技术f(x)在区间(0,+∞)上恰有两个零点x1,x2;0<x1
1<x2<2.使乙为真.
③f(x)=0得cos(x+2)=cosx.x+2=2kπ±x.x=kπ-1,k∈Z,在区间(0,+∞)上有无数个零点.使乙为假.
故选D.
点评:要掌握好基本初等函数的单调性,以及函数零点个数的判定,用二分法求零点的近似值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对任意实数a,b,函数F(a,b)=
1
2
(a+b-|a-b|)
.如果函数f(x)=sinx,g(x)=cosx,那么对于函数G(x)=F(f(x),g(x)).对于下列五种说法:
(1)函数G(x)的值域是[-
2
,2]

(2)当且仅当2kπ+
π
2
<x<2(k+1)π(k∈Z)
时,G(x)<0;
(3)当且仅当x=2kπ+
π
2
(k∈Z)
时,该函数取最大值1;
(4)函数G(x)图象在[
π
4
4
]
上相邻两个最高点的距离是相邻两个最低点的距离的4倍;
(5)对任意实数x有G(
4
-x)=G(
4
+x)
恒成立.
其中正确结论的序号是
(2)(4)(5)
(2)(4)(5)

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x)=lg|x-2|+1,有下三个命题:
①f(x+2)是偶函数;
②f(x)在区间(-∞,2)上是减函数,在区间(2,+∞)上是增函数;
③f(x+2)-f(x)在区间(2,+∞)上是增函数.
其中正确命题的序号是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x),若存在区间M=[a,b],(a<b),使得{y|y=f(x),x∈M}=M,则称区间M为函数f(x)
的一个“稳定区间”.给出下列4个函数:
①f(x)=ex;   
②f(x)=lnx;
③f(x)=x3;   
④f(x)=cos
π2
x.
其中存在“稳定区间”的函数有
③④
③④
(填上所有正确的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•临沂二模)对于函数f(x)=
3
sinx+cosx,下列命题中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x)=2sinxcosx,下列选项中正确的是(  )

查看答案和解析>>

同步练习册答案