精英家教网 > 高中数学 > 题目详情

已知函数,是否存在实数,使函数在上递减,在上递增?若存在,求出所有值;若不存在,请说明理由.

解析试题分析:存在    

          6分
时,在(1,2)上有,不符题意,舍;--8分
时,
,在
即函数在上递减,在上递增 所以  12分
考点:函数单调性与导数
点评:由已知条件可得是函数的极小值点,除考虑处导数为零外还要看在处左侧是否导数小于零,右侧是否导数大于零

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数
(I)若,求函数的极小值,
(Ⅱ)若,设,函数.若存在使得成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知曲线 y = x3 + x-2 在点 P0 处的切线  与直线4x-y-1=0平行,且点 P0 在第三象限,
(1)求P0的坐标;
(2)若直线  , 且 l 也过切点P0 ,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

理科(本小题14分)已知函数,当时,函数取得极大值.
(Ⅰ)求实数的值;(Ⅱ)已知结论:若函数在区间内导数都存在,且,则存在,使得.试用这个结论证明:若,函数,则对任意,都有;(Ⅲ)已知正数满足求证:当时,对任意大于,且互不相等的实数,都有

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数其中
(1)若=0,求的单调区间;
(2)设表示两个数中的最大值,求证:当0≤x≤1时,||≤

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分) 设函数.
(Ⅰ)判断能否为函数的极值点,并说明理由;
(Ⅱ)若存在,使得定义在上的函数处取得最大值,求实数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,且处取得极值.
(1)求函数的解析式.
(2)设函数,是否存在实数,使得曲线轴有两个交点,若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的最小值为0,其中
(1)求a的值
(2)若对任意的,有成立,求实数k的最小值
(3)证明

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)
已知函数 
(1) 当时,求函数的最值;
(2) 求函数的单调区间;

查看答案和解析>>

同步练习册答案