精英家教网 > 高中数学 > 题目详情

设函数
(I)若,求函数的极小值,
(Ⅱ)若,设,函数.若存在使得成立,求的取值范围.

(1)函数f(x)的极小值为f(1)=(2)

解析试题分析:解:(I),(2分)
,得,或
,得,或
,得???????????????????
x,,f(x)的变化情况如下表

X



1
)

+
0
-
0
+
f(x)
递增
极大值
递减
极小值
递增
所以,函数f(x)的极小值为f(1)= (5分)
(Ⅱ)
a>0时,在区间(0,1)上的单调递减,在区间(1,4)上单调递增,
∴函数在区间上的最小值为
又∵
∴函数在区间[0,4]上的值域是,即(7分)
在区间[0,4]上是增函数,
且它在区间[0,4]上的值域是(9分)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数f(x)=-x3x2-2x(a∈R).
(1)当a=3时,求函数f(x)的单调区间;
(2)若对于任意x∈[1,+∞)都有f′(x)<2(a-1)成立,求实数a的取值范围;
(3)若过点可作函数y=f(x)图象的三条不同切线,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求的极小值;
(2)若直线对任意的都不是曲线的切线,求的取值范围;
(3)设,求的最大值的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)(I)求函数图象上的点处的切线方程;
(Ⅱ)已知函数,其中是自然对数的底数,
对于任意的恒成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f (x) =
(1)试判断当的大小关系;
(2)试判断曲线是否存在公切线,若存在,求出公切线方程,若不存在,说明理由;
(3)试比较 (1 + 1×2) (1 + 2×3) ……(1 +2012×2013)与的大小,并写出判断过程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(I)当时,讨论函数的单调性:
(Ⅱ)若函数的图像上存在不同两点,设线段的中点为,使得在点处的切线与直线平行或重合,则说函数是“中值平衡函数”,切线叫做函数的“中值平衡切线”.
试判断函数是否是“中值平衡函数”?若是,判断函数的“中值平衡切线”的条数;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)若函数在x=1处与直线相切.
①求实数的值;②求函数上的最大值.
(2)当时,若不等式对所有的都成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题


(1)若处有极值,求;(2)若上为增函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,是否存在实数,使函数在上递减,在上递增?若存在,求出所有值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案