精英家教网 > 高中数学 > 题目详情
如图,在棱长为的正方体中,点是棱的中点,点在棱上,且满足.

(1)求证:
(2)在棱上确定一点,使四点共面,并求此时的长;
(3)求几何体的体积.
(1)详见解析;(2);(3).

试题分析:(1)连接,先由正方体的性质得到,以及平面,从而得到,利用直线与平面垂直的判定定理可以得到平面,于是得到;(2)假设四点四点共面,利用平面与平面平行的性质定理得到,于是得到四边形为平行四边形,从而得到的长度,再结合勾股定理得到的长度,最终得到的长度;(3)连接,由正方体的性质得到,结合(1)中的结论平面,得到
平面,然后选择以点为顶点,为高,四边形为底面的四棱锥,利用锥体的体积公式计算几何体的体积.
试题解析:(1)如下图所示,连接

由于为正方体,所以四边形为正方形,所以
平面
平面
平面
(2)如下图所示,假设四点共面,则四点确定平面

由于为正方体,所以平面平面
平面平面,平面平面
由平面与平面平行的判定定理得
同理可得,因此四边形为平行四边形,
中,
由勾股定理得
在直角梯形中,下底,直角腰,斜腰
由勾股定理可得
结合图形可知,解得
(3)如下图所示,连接于点

由于为正方体,
所以四边形为平行四边形,
由(1)知,平面,所以平面平面
由于为棱长为正方体,所以

在直角梯形中,直角腰,上底,下底
因此梯形的面积
因此几何体的体积.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥中,是等边三角形,.

(1)证明::
(2)证明:
(3)若,且平面平面,求三棱锥体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知四棱锥PABCD的正视图是一个底边长为4、腰长为3的等腰三角形,如图分别是四棱锥PABCD的侧视图和俯视图.

(1)求证:ADPC
(2)求四棱锥PABCD的侧面PAB的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图所示,半径为4的球O中有一内接圆柱,当圆柱的侧面积最大时,球的表面积与该圆柱的侧面积之差是    .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

长方体的三个相邻面的面积分别为2,3,6,这个长方体的顶点都在同一个球面上,则这个球的表面积为(  )
A.πB.56πC.14πD.64π

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在半径为R的半球内有一内接圆柱,则这个圆柱的体积的最大值是(  )
A.πR3B.πR3
C.πR3D.πR3

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在三棱柱A1B1C1­ABC中,D,E,F分别是AB,AC,AA1的中点,设三棱锥F­ADE的体积为V1,三棱柱A1B1C1­ABC的体积为V2,则V1∶V2=________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

棱长为2的正方体的内切球的表面积为(     )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

球的表面积与它的内接正方体的表面积之比是(   )
A.B.C.D.

查看答案和解析>>

同步练习册答案