精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)=sin(ωx)(ω为正整数)在区间(-$\frac{π}{6}$,$\frac{π}{12}$)上不单调,则ω的最小值为4.

分析 根据题意,结合正弦函数的图象与性质,得出ω•(-$\frac{π}{6}$)<-$\frac{π}{2}$或ω•$\frac{π}{12}$≥$\frac{π}{2}$,求出ω的最小值即可.

解答 解:因为ω为正整数,函数f(x)=sin(ωx)在区间(-$\frac{π}{6}$,$\frac{π}{12}$)上不单调,
所以ω•(-$\frac{π}{6}$)<-$\frac{π}{2}$,或ω•$\frac{π}{12}$≥$\frac{π}{2}$,
解得ω>3,
所以ω的最小值为4.
故答案为:4.

点评 本题主要考查了正弦函数的图象与性质的应用问题,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知命题p:“x>3”是“x2>9”的充要条件,命题q:“a2>b2”是“a>b”的充要条件,则(  )
A.p∨q为真B.p∧q为真C.p真q假D.p∨q为假

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=$\left\{\begin{array}{l}{(a-5)x+8,x≤2}\\{\frac{2a}{x},x>2}\end{array}\right.$是(-∞,+∞)上的减函数,则实数a的取值范围为(  )
A.(-∞,5)B.(0,2]C.(0,5)D.[2,5)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知集合A={x|x2-3x+2=0},B={x|3x+1=9},则A∪B=(  )
A.{-2,1,2}B.{-2,2}C.{1,2}D.{1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.(1)sin330°+5${\;}^{1-lo{g}_{5}2}$=2;
(2)$\sqrt{4-2\sqrt{3}}$+$\frac{1}{\sqrt{7+4\sqrt{3}}}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=2cosxsin(x-$\frac{π}{6}$)+$\frac{1}{2}$.
(1)求函数f(x)的对称轴方程;
(2)若方程sin2x+2|f(x+$\frac{π}{12}$)|-m+1=0在x∈[-$\frac{π}{3}$,$\frac{π}{2}$]上有三个实数解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.cos210°=(  )
A.-$\frac{\sqrt{3}}{2}$B.-$\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)对一切x,y∈R,都有f(x+y)=f(x)+f(y).
(1)判断函数f(x)的奇偶性,并给与证明;
(2)若f(-3)=a,试用a表示f(12).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知一个几何体的三视图及其尺寸如图所示(单位:cm),则它的表面积为24πcm2

查看答案和解析>>

同步练习册答案