精英家教网 > 高中数学 > 题目详情
(2013•门头沟区一模)已知函数f(x)=
ax2+x+a
ex

(Ⅰ)函数f(x)在点(0,f(0))处的切线与直线2x+y-1=0平行,求a的值;
(Ⅱ)当x∈[0,2]时,f(x)≥
1
e2
恒成立,求a的取值范围.
分析:(Ⅰ)由题意可得f′(0)=1-a=-2,解之可得a值;
(Ⅱ)求导数,分a=0和a≠0两大类老讨论,其中第二类又需分a<0,0<a≤1,a>1三种情况,综合可得.
解答:解:(Ⅰ)由题意可得f′(x)=
(2ax+1)ex-(ax2+x+a)ex
(ex)2
=
-ax2+(2a-1)x+1-a
ex
 …(2分)
故可得f′(0)=1-a,因为函数f(x)在点(0,f(0))处的切线与直线2x+y-1=0平行,
而直线的斜率为-2,所以1-a=-2,解得a=3                         …(5分)
(Ⅱ)由(Ⅰ)知f′(x)=
-ax2+(2a-1)x+1-a
ex
=
-(ax+1-a)(x-1)
ex
,令f′(x)=0,
当a=0时,x=1,在(0,1)上,有f′(x)>0,函数f(x)单调递增;
在(1,2)上,有f′(x)<0,函数f(x)单调递减,f(0)=0,f(2)=
2
e2

故函数f(x)的最小值为0,结论不成立.…(6分)
当a≠0时,x1=1,x2=1-
1
a
                               …(7分)
若a<0,f(0)=a<0,结论不成立                     …(9分)
若0<a≤1,则x2≤0,在(0,1)上,有f′(x)>0,函数f(x)单调递增;
在(1,2)上,有f′(x)<0,函数f(x)单调递减,
只需
f(0)≥
1
e2
f(2)≥
1
e2
,解得
a≥
1
e2
a≥-
1
5
,所以
1
e2
≤a≤1
            …(11分)
若a>1,则0<1-
1
a
<1
,函数在x=1-
1
a
处有极小值,只需
f(1-
1
a
)≥
1
e2
f(2)≥
1
e2

解得
2a-1≥e-1-
1
a
a≥-
1
5
,因为2a-1>1,e-1-
1
a
<1,所以a>1   …13
综上所述,a≥
1
e2
  …(14分)
点评:本题考查利用导数研究曲线的切线,涉及恒成立问题,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•门头沟区一模)为得到函数y=sin(π-2x)的图象,可以将函数y=sin(2x-
π
3
)的图象(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•门头沟区一模)定义在(-∞,0)∪(0,+∞)上的函数f(x),如果对于任意给定的等比数列{an},{f(an)}仍是等比数列,则称f(x)为“等比函数”.现有定义在(-∞,0)∪(0,+∞)上的如下函数:
①f(x)=2x
②f(x)=log2|x|;
③f(x)=x2
④f(x)=ln2x
则其中是“等比函数”的f(x)的序号为
③④
③④

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•门头沟区一模)已知数列{An}的前n项和为Sn,a1=1,满足下列条件
①?n∈N*,an≠0;
②点Pn(an,Sn)在函数f(x)=
x2+x2
的图象上;
(I)求数列{an}的通项an及前n项和Sn
(II)求证:0≤|Pn+1Pn+2|-|PnPn+1|<1.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•门头沟区一模)如图已知平面α,β,且α∩β=AB,PC⊥α,PD⊥β,C,D是垂足.
(Ⅰ)求证:AB⊥平面PCD;
(Ⅱ)若PC=PD=1,CD=
2
,试判断平面α与平面β的位置关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•门头沟区一模)已知函数f(x)=
2,        x≥0
x2+4x+2,  x<0
的图象与直线y=k(x+2)-2恰有三个公共点,则实数k的取值范围是(  )

查看答案和解析>>

同步练习册答案