精英家教网 > 高中数学 > 题目详情
已知正项数列{bn}满足b1=1,
b
2
n+1
-bn+1bn-2
b
2
n
=bn+1+bn
.若数列{an}满足a1=1,an=bn(
1
b1
+
1
b2
+…+
1
bn-1
)
(n≥2且n∈N*
(1)求数列{bn}的通项公式bn
(2)证明:an>3•2n-1-2(n≥4,n∈N*)
(3)求证:(1+
1
a1
)•(1+
1
a2
)•…•(1+
1
an
)<
10
3
(n∈N*)
分析:(1)根据
b
2
n+1
-bn+1bn-2
b
2
n
=bn+1+bn
,化简可得{bn+1}为首项为2,公比为2的等比数列,由此可求数列{bn}的通项公式bn
(2)an=bn(
1
b1
+
1
b2
+…+
1
bn-1
)
可化为
an
bn
=
1
b1
+
1
b2
+…+
1
bn-1
(n≥2)
,再写一式,两式相减可得an+1>2an+2,由此可得结论;
(3)由(2)知(1+
1
a1
)•(1+
1
a2
)•…•(1+
1
an
)
=
a1+1
a1
×
a2+1
a2
×…×
an+1
an
=2(
1
b1
+
1
b2
+…+
1
bn
)
,根据
1
b1
+
1
b2
+…+
1
bn
=1+
1
3
+…+
1
2n-1
,利用放缩法,即可证得结论.
解答:(1)解:∵
b
2
n+1
-bn+1bn-2
b
2
n
=bn+1+bn

∴(bn+1-2bn)(bn+1+bn)=bn+1+bn
∵bn>0
∴bn+1=2bn+1,
∴bn+1+1=2(bn+1),
∴{bn+1}为首项为2,公比为2的等比数列
∴bn+1=2•2n-1=2n
∴bn=2n-1;
(2)证明:∵an=bn(
1
b1
+
1
b2
+…+
1
bn-1
)

an
bn
=
1
b1
+
1
b2
+…+
1
bn-1
(n≥2)

an+1
bn+1
=
1
b1
+
1
b2
+…+
1
bn-1
+
1
bn

②-①可得
an+1
bn+1
=
an+1
bn

an+1
an+1
=
bn
bn+1
=
2n-1
2n+1-1
1
2

∴an+1>2an+2(n≥2),n=1时也成立
an+1>2an+2>…>2na1+2n+…+22+2=3•2n-2
an>3•2n-1-2
(3)由(2)知(1+
1
a1
)•(1+
1
a2
)•…•(1+
1
an
)
=
a1+1
a1
×
a2+1
a2
×…×
an+1
an

=
1
a1
×
a1+1
a2
×…×
an+1
an+1
×an+1
=
2
3
×
b2
b3
×…×
bn
bn+1
×an+1
=
2
3
×
b2
bn+1
×an+1
=2(
1
b1
+
1
b2
+…+
1
bn
)

1
b1
+
1
b2
+…+
1
bn
=1+
1
3
+…+
1
2n-1

当k≥2时,
1
2k-1
<2(
1
2k-1
-
1
2k+1-1

∴1+
1
3
+…+
1
2n-1
<1+2[(
1
22-1
-
1
23-1
)+…+(
1
2n-1
-
1
2n+1-1

=1+2(
1
3
-
1
2n+1-1
)<
5
3

∴原不等式成立.
点评:本题考查等比数列的证明,考查数列与不等式的结合,考查学生分析解决问题的能力,难度较大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知正项数列{bn}的前n项和Bn=
14
(bn+1)2
,求{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

17、“已知数列{an}为等差数列,它的前n项和为Sn,若存在正整数m,n(m≠n),使得Sm=Sn,则Sm+n=0”.类比上述结论,补完整命题:“已知正项数列{bn}为等比数列,
它的前n.项积为Tn,若存在正整数m,n.(m≠n),使得Tm=Tn,则Tm+n=1.
.”

查看答案和解析>>

科目:高中数学 来源:2011年陕西省西安中学高考数学第十三次模拟试卷(文科)(解析版) 题型:填空题

“已知数列{an}为等差数列,它的前n项和为Sn,若存在正整数m,n(m≠n),使得Sm=Sn,则Sm+n=0”.类比上述结论,补完整命题:“已知正项数列{bn}为等比数列,    .”

查看答案和解析>>

科目:高中数学 来源:2011年江苏省南通市如皋市白蒲高级中学高考数学模拟试卷(解析版) 题型:解答题

“已知数列{an}为等差数列,它的前n项和为Sn,若存在正整数m,n(m≠n),使得Sm=Sn,则Sm+n=0”.类比上述结论,补完整命题:“已知正项数列{bn}为等比数列,    .”

查看答案和解析>>

同步练习册答案