精英家教网 > 高中数学 > 题目详情
7.如图所示,四棱锥P-ABCD中,底面ABCD为菱形,且直线PA⊥平面ABCD,又棱PA=AB=2,E为CD的中点,∠ABC=60°.
(Ⅰ) 求证:直线EA⊥平面PAB;
(Ⅱ) 求直线AE与平面PCD所成角的正切值.

分析 (1)只需证明直线EA⊥AB,且EA⊥PA即可;
(2)先证明AH⊥平面PCD,得出∠AEP为直线AE与平面PCD所成角,在Rt△PAE中计算tan∠AEP的值.

解答 解:(1)证明:∵∠ADE=∠ABC=60°,ED=1,AD=2,
∴△AED是以∠AED为直角的Rt△;
又∵AB∥CD,∴EA⊥AB;
又PA⊥平面ABCD,∴EA⊥PA;
且AB∩PA=A,
∴EA⊥平面PAB;---------(7分)
(2)如图所示,连结PE,过A点作AH⊥PE于H点,
∵CD⊥EA,CD⊥PA,且PA∩EA=A,
∴CD⊥平面PAE;
又AH?平面PAE,
∴AH⊥CD;
又AH⊥PE,且CD∩AE=E,
∴AH⊥平面PCD,
∴∠AEP为直线AE与平面PCD所成角;------(11分)
在Rt△PAE中,∵PA=2,AE=$\sqrt{{AD}^{2}{-DE}^{2}}$=$\sqrt{3}$,
∴tan∠AEP=$\frac{PA}{AE}$=$\frac{2}{\sqrt{3}}$=$\frac{2\sqrt{3}}{3}$.----------(15分)

点评 本题考查了空间中的垂直关系的应用问题,也考查了空间想象能力与逻辑思维能力,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知命题p:“?x∈[-5,0],a≥ex”,命题q:“?x∈R,x2+4x+a=0”,若“p∧q”是真命题,则实数a的取值范围是(  )
A.[e,4]B.[1,4]C.(4,+∞)D.(-∞,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.若(ax+2b)6的展开式中x2与x3的系数之比为3:4,其中a>0,b≠0
(1)当a=1时,求(ax+2b)6的展开式中二项式系数最大的项;
(2)令$F(a,b)=\frac{{{b^3}+16}}{a}$,求F(a,b)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知集合M={f(x)|当x∈[0,4]时,|f(x)|≤2恒成立}
(1)判断函数g(x)=$\frac{{{2^x}-1}}{{{2^x}+1}}({x∈[{0,4}]})$是否属于集合M,说明理由;
(2)已知f(x)=x2+bx+c(c≥2)满足f(x)∈M,求b和c的值;
(3)已知f(x)是定义在区间[-4,4]上的奇函数,f(4)=0且对任何实数x1,x2∈[-4,4]都有|f(x1)-f(x2)|≤|x1-x2|,求证:f(x)∈M.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知经过椭圆$\frac{x^2}{36}$+$\frac{y^2}{16}$=1的右焦点F2作垂直于x轴的直线AB,交椭圆于A,B两点,F1是椭圆的左焦点,则△AF1B的周长为24.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,内角A,B,C的对边分别为a,b,c,已知角C为钝角,且cos(A-C)+cosB=$\frac{3\sqrt{5}}{5}$,c=$\frac{3\sqrt{5}}{5}$a
(1)求角A;
(2)若a=$\sqrt{10}$,D为AC边的中点,求BD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图,在矩形ABCD中,AB=3,BC=$\sqrt{3}$,过点A向BAD所在区域等可能任作一条射线AP,则事件“射线AP与线段BC有公共点”发生的概率为(  )
A.$\frac{\sqrt{3}}{3}$B.$\frac{1}{3}$C.$\frac{\sqrt{3}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知非空集合A={x|2a+1≤x≤3a-5},B={x|3≤x≤22},
(1)当a=10时,求A∩B,A∪B;
(2)求能使A⊆B成立的a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=xcosx-sinx,当x∈[-3π,3π]时,函数f(x)的零点个数是(  )
A.7B.5C.3D.1

查看答案和解析>>

同步练习册答案