精英家教网 > 高中数学 > 题目详情
5、函数f(x)=xe-x的(  )
分析:求出f(x)的导函数,令导函数等于0求出x的值,利用x的值分区间讨论导函数的正负,得到函数的单调区间,根据函数的增减性进而得到函数的极大值.
解答:解:令f′(x)=(1-x)e-x=0,解得x=1,
所以当x变化时,f(x)和f′(x)的变化情况如图所示:

所以函数的极大值为f(1)=e-1
故选A
点评:此题考查学生会利用导函数的正负得出函数的单调区间,并根据函数的增减性得到函数的极值,是一道综合题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列命题中正确的有
 
.(填上所有正确命题的序号)
①若f(x)可导且f'(x0)=0,则x0是f(x)的极值点;
②函数f(x)=xe-x,x∈[2,4]的最大值为2e-2
③已知函数f(x)=
-x2+2x
,则_1f(x)dx的值为
π
4

④一质点在直线上以速度v=t2-4t+3(m/s)运动,从时刻t=0(s)到t=4(s)时质点运动的路程为
4
3
(m)

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=xe-x,x∈[2,4]的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=xe-x的单调增区间是
(-∞,1)
(-∞,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xe-x+(x-2)ex-a(e≈2.73).
(1)当a=2时,证明函数f(x)是增函数;
(2)当x≥1时,f(x)≥
(x-1)2ex
恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案