精英家教网 > 高中数学 > 题目详情
设抛物线C:y2=2px(p>0)的焦点为F,经过点F的动直线l交抛物线C于点A(x1,y1),B(x2,y2)且y1y2=-4.
(1)求抛物线C的方程;
(2)若(O为坐标原点),且点E在抛物线C上,求直线l倾斜角;
(3)若点M是抛物线C的准线上的一点,直线MF,MA,MB的斜率分别为k,k1,k2.求证:当k为定值时,k1+k2也为定值.
【答案】分析:(1)设出直线的方程与抛物线的方程联立,消去x得到关于y的一元二次方程,利用根据根与系数的关系即可得出;
(2)根据向量和(1)的结论可用k表示E点的坐标代入抛物线的方程即可得出直线l的斜率和倾斜角;
(3)利用向量计算公式和(1)中的根与系数的关系即可得出.
解答:解:(1)根据题意可知:,设直线l的方程为:,则:
联立方程:,消去x可得:y2-2pky-p2=0(*),
根据韦达定理可得:,∴p=2,
∴抛物线C的方程:y2=4x.
(2)设E(x,y),则:,由(*)式可得:y1+y2=2pk=4k
∴y=8k,
,∴

,∴64k2=4(8k2+4),∴2k2=1,∴
∴直线l的斜率
∴倾斜角为
(3)可以验证该定值为2k,证明如下:
设M(-1,yM),则:
,∴

=
=
=
∴k1+k2=2k为定值.
点评:熟练掌握直线与抛物线相交问题转化为直线方程与抛物线的方程联立得到一元二次方程、根据根与系数的关系、斜率的计算公式是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设抛物线C:y2=2px(p>0)的焦点为F,准线为l,A为C上一点,已知以F为圆心,FA为半径的圆F交l于B,D两点,若△BDF为等边三角形,△ABD的面积为6,则p的值为
3
3
,圆F的方程为
(x-
3
2
)2+y2=12
(x-
3
2
)2+y2=12

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宝山区一模)设抛物线C:y2=2px(p>0)的焦点为F,经过点F的直线与抛物线交于A、B两点.
(1)若p=2,求线段AF中点M的轨迹方程;
(2)若直线AB的方向向量为
n
=(1,2)
,当焦点为F(
1
2
,0)
时,求△OAB的面积;
(3)若M是抛物线C准线上的点,求证:直线MA、MF、MB的斜率成等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•长宁区二模)设抛物线C:y2=2px(p>0)的焦点为F,过F且垂直于x轴的直线与抛物线交于P1,P2两点,已知|P1P2|=8.
(1)求抛物线C的方程;
(2)过点M(3,0)作方向向量为
d
=(1,a)
的直线与曲线C相交于A,B两点,求△FAB的面积S(a)并求其值域;
(3)设m>0,过点M(m,0)作直线与曲线C相交于A,B两点,问是否存在实数m使∠AFB为钝角?若存在,请求出m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设抛物线C:y2=3px(p>0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•黄浦区二模)设抛物线C:y2=2px(p>0)的焦点为F,经过点F的动直线l交抛物线C于点A(x1,y1),B(x2,y2)且y1y2=-4.
(1)求抛物线C的方程;
(2)若
OE
=2(
OA
+
OB
)
(O为坐标原点),且点E在抛物线C上,求直线l倾斜角;
(3)若点M是抛物线C的准线上的一点,直线MF,MA,MB的斜率分别为k0,k1,k2.求证:当k0为定值时,k1+k2也为定值.

查看答案和解析>>

同步练习册答案